Artykuły w czasopismach na temat „Na/MnO2 Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Na/MnO2 Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Xu, i Yuhui Ma. "MnO2 nanodrug mediates the expression of antigen-presenting cell through combined chemotherapy to enhance the antineoplastic curative function". Materials Express 13, nr 6 (1.06.2023): 935–41. http://dx.doi.org/10.1166/mex.2023.2432.
Pełny tekst źródłaKuwabara, K., K. Hanafusa i K. Sugiyama. "MnO2 for Solid Electrolyte Cells". Journal of The Electrochemical Society 136, nr 2 (1.02.1989): 319–23. http://dx.doi.org/10.1149/1.2096628.
Pełny tekst źródłaHolliman, Peter J., Arthur Connell, Eurig W. Jones i Christopher P. Kershaw. "Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells". Materials 13, nr 4 (20.02.2020): 949. http://dx.doi.org/10.3390/ma13040949.
Pełny tekst źródłaElawwad, Abdelsalam, Mostafa Ragab, Ahmed Hamdy i Dalal Z. Husein. "Enhancing the performance of microbial desalination cells using δMnO2/graphene nanocomposite as a cathode catalyst". Journal of Water Reuse and Desalination 10, nr 3 (15.07.2020): 214–26. http://dx.doi.org/10.2166/wrd.2020.011.
Pełny tekst źródłaHu, Qin, Shu Zhang, Jun Zhu, Lina Yin, Suping Liu, Xiaowei Huang i Guihao Ke. "The Promotional Effect of Hollow MnO2 with Brucea Javanica Oil Emulsion (BJOE) on Endometrial Cancer Apoptosis". BioMed Research International 2021 (18.03.2021): 1–7. http://dx.doi.org/10.1155/2021/6631533.
Pełny tekst źródłaTremouli, Asimina, Pavlos K. Pandis, Theofilos Kamperidis, Christos Argirusis, Vassilis N. Stathopoulos i Gerasimos Lyberatos. "Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst". Water 15, nr 5 (23.02.2023): 862. http://dx.doi.org/10.3390/w15050862.
Pełny tekst źródłaDzieciuch, M. A., N. Gupta i H. S. Wroblowa. "Rechargeable Cells with Modified MnO2 Cathodes". Journal of The Electrochemical Society 135, nr 10 (1.10.1988): 2415–18. http://dx.doi.org/10.1149/1.2095349.
Pełny tekst źródłaYamamoto, Takakazu, i Takayuki Shoji. "Rechargeable Zn∣ZnSO4∣MnO2-type cells". Inorganica Chimica Acta 117, nr 2 (lipiec 1986): L27—L28. http://dx.doi.org/10.1016/s0020-1693(00)82175-1.
Pełny tekst źródłaKim, Sa Heum, i Seung Mo Oh. "Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells". Journal of Power Sources 72, nr 2 (kwiecień 1998): 150–58. http://dx.doi.org/10.1016/s0378-7753(97)02703-1.
Pełny tekst źródłaDessie, Yilkal, Sisay Tadesse i Rajalakshmanan Eswaramoorthy. "Surface Roughness and Electrochemical Performance Properties of Biosynthesized α-MnO2/NiO-Based Polyaniline Ternary Composites as Efficient Catalysts in Microbial Fuel Cells". Journal of Nanomaterials 2021 (30.06.2021): 1–21. http://dx.doi.org/10.1155/2021/7475902.
Pełny tekst źródłaYadav, Gautam, Jinchao Huang, Meir Weiner, Shinju Yang, Kristen Vitale, Sanbir Rahman, Kevin Keane i Sanjoy Banerjee. "Improvements in Performance and Cost Reduction of Large-Scale Rechargeable Zinc|Manganese Dioxide Batteries and a Future Roadmap Driven through Real World Applications". ECS Meeting Abstracts MA2022-01, nr 3 (7.07.2022): 452. http://dx.doi.org/10.1149/ma2022-013452mtgabs.
Pełny tekst źródłaWu, Zixu, Guangxing Li, Qin Liao, Ruida Ding, Xuze Zuo, Qilin Liu, Hao He i Shuguang Chen. "Enhancing Oxygen Reduction Reaction Activity of α-MnO2 Nanowires Through Ag Doping". Nano 15, nr 09 (wrzesień 2020): 2050115. http://dx.doi.org/10.1142/s1793292020501155.
Pełny tekst źródłaParveen, Nazish, Thi Hiep Han, Sajid Ali Ansari i Moonyong Lee. "Sustainable Bio-Energy Production in Microbial Fuel Cell Using MnO2 Nanoparticle-Decorated Hollow Carbon Nanofibers as Active Cathode Materials". Journal of Nanoelectronics and Optoelectronics 16, nr 2 (1.02.2021): 127–35. http://dx.doi.org/10.1166/jno.2021.2926.
Pełny tekst źródłaHao, Li, Li Xue, Fengchun Huang, Gaozhe Cai, Wuzhen Qi, Miao Zhang, Qing’an Han, Zengli Wang i Jianhan Lin. "A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO2 Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium". Micromachines 11, nr 3 (9.03.2020): 281. http://dx.doi.org/10.3390/mi11030281.
Pełny tekst źródłaÖzcan, Şeyma, Aslıhan Güler, Tugrul Cetinkaya, Mehmet O. Guler i Hatem Akbulut. "Freestanding graphene/MnO2 cathodes for Li-ion batteries". Beilstein Journal of Nanotechnology 8 (14.09.2017): 1932–38. http://dx.doi.org/10.3762/bjnano.8.193.
Pełny tekst źródłaYuan, Haoran, Lifang Deng, Yong Chen i Yong Yuan. "MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells". Electrochimica Acta 196 (kwiecień 2016): 280–85. http://dx.doi.org/10.1016/j.electacta.2016.02.183.
Pełny tekst źródłaLi, Rui, Yuankun Wang i Tengfei Long. "Efficient Isolation of Circulating Tumor Cells Using Ultra-Convenient Substrates Based on Self-Assembled Hollow MnO2 Nanoparticles". Coatings 12, nr 8 (19.08.2022): 1214. http://dx.doi.org/10.3390/coatings12081214.
Pełny tekst źródłaZhu, Shuang, De-Qiang Wang, Xue-Hua Sun, Xin-Yu Li, Hui-Fang Xiao, Wan-Ru Sun, Xing-Tao Wang i in. "Mitochondria-Targeted Degradable Nanocomposite Combined with Laser and Ultrasound for Synergistic Tumor Therapies". Journal of Biomedical Nanotechnology 18, nr 3 (1.03.2022): 763–77. http://dx.doi.org/10.1166/jbn.2022.3287.
Pełny tekst źródłaWang, Xiao, Shuanghao Zheng, Feng Zhou, Jieqiong Qin, Xiaoyu Shi, Sen Wang, Chenglin Sun, Xinhe Bao i Zhong-Shuai Wu. "Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety". National Science Review 7, nr 1 (11.06.2019): 64–72. http://dx.doi.org/10.1093/nsr/nwz070.
Pełny tekst źródłaYan, Ziyu, Xuemei Zhang, Yifan Liu, Yiming Shen, Ning Li, Qiang Jia, Yanhui Ji, Peitao Zhang, Li Zhao i Zhaowei Meng. "HSA-MnO2-131I Combined Imaging and Treatment of Anaplastic Thyroid Carcinoma". Technology in Cancer Research & Treatment 21 (styczeń 2022): 153303382211065. http://dx.doi.org/10.1177/15330338221106557.
Pełny tekst źródłaWang, Yuyang, Guangxu Hu, Dayu Zheng, Jing Dong i Jing Wang. "High-Capacitance Manganese Dioxide Oxide/Carbon Nanotube/Carbon Felt as a Bioanode for Enhanced Energy Output in Microbial Fuel Cells". Coatings 13, nr 6 (4.06.2023): 1043. http://dx.doi.org/10.3390/coatings13061043.
Pełny tekst źródłaKhera, Jatin, Arvinder Singh, SatishK Mandal i Amreesh Chandra. "MnO2 Nanoparticles as Efficient Catalyst in Fuel Cells". Advanced Science, Engineering and Medicine 5, nr 10 (1.10.2013): 1067–72. http://dx.doi.org/10.1166/asem.2013.1402.
Pełny tekst źródłaLam, Binh Thi Xuan, Phung My Loan Le i Thoa Thi Phuong Nguyen. "STUDY ON LITHIUM MANGANESE OXIDE SPINEL SYSTEM AS CATHODE MATERIALS FOR LITHIUM ION BATTERY: SYNTHESIS, MORPHOLOGICAL AND ELECTROCHEMICAL CHARACTERISTICS". Science and Technology Development Journal 12, nr 10 (28.05.2009): 64–71. http://dx.doi.org/10.32508/stdj.v12i10.2301.
Pełny tekst źródłaChen, Jen-Jeng, i Hsuan-Hsien Yeh. "Comparison of the effects of ozone and permanganate preoxidation on algae flocculation". Water Supply 6, nr 3 (1.07.2006): 79–88. http://dx.doi.org/10.2166/ws.2006.796.
Pełny tekst źródłaAhmad, Azizah Hanom, Ri Hanum Yahaya Subban, R. Zakaria i A. M. M. Ali. "Comparative Studies on Li/LiI-Li2WO4-Li3PO4/Metal Oxide Electrochemical Cells". Materials Science Forum 517 (czerwiec 2006): 275–77. http://dx.doi.org/10.4028/www.scientific.net/msf.517.275.
Pełny tekst źródłaFleischer, Niles A., i Ronald J. Ekern. "Galvanic Action Between MnO2 ‐ Metal Couples and Its Effect on the Discharge of Li / MnO2 Cells". Journal of The Electrochemical Society 132, nr 1 (1.01.1985): 125–26. http://dx.doi.org/10.1149/1.2113742.
Pełny tekst źródłaKędzierski, Tomasz, Daria Baranowska, Damian Bęben, Beata Zielińska, Xuecheng Chen i Ewa Mijowska. "Flexible Films as Anode Materials Based on rGO and TiO2/MnO2 in Li-Ion Batteries Free of Non-Active Agents". Energies 14, nr 23 (6.12.2021): 8168. http://dx.doi.org/10.3390/en14238168.
Pełny tekst źródłaWalanda, Daud K. "KINETIC TRANSFORMATION OF SPINEL TYPE LiMnLiMn2O4 INTO TUNNEL TYPE MnO2". Indonesian Journal of Chemistry 7, nr 2 (20.06.2010): 117–20. http://dx.doi.org/10.22146/ijc.21685.
Pełny tekst źródłaIstiqomah, Markus Diantoro, Yusril Al Fath, Nasikhudin i Worawat Meevasana. "Activated Carbon-MnO2 Composite on Nickel Foam as Supercapacitors Electrode in Organic Electrolyte". E3S Web of Conferences 400 (2023): 01014. http://dx.doi.org/10.1051/e3sconf/202340001014.
Pełny tekst źródłaMekhalfi, H., N. Chelali, S. Benhamimid, O. M. Laib, B. Nessark i A. Bahloul. "Recycling of manganese dioxide from spent Zn–MnO2 cells". Russian Journal of Applied Chemistry 88, nr 5 (maj 2015): 879–84. http://dx.doi.org/10.1134/s1070427215050249.
Pełny tekst źródłaSleigh, A. K., i W. R. McKinnon. "A study of relaxation processes in LiMnO2 cells". Electrochimica Acta 35, nr 11-12 (listopad 1990): 1849–54. http://dx.doi.org/10.1016/0013-4686(90)87089-k.
Pełny tekst źródłaZhao, Qing, Michael J. Zachman, Wajdi I. Al Sadat, Jingxu Zheng, Lena F. Kourkoutis i Lynden Archer. "Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells". Science Advances 4, nr 11 (listopad 2018): eaau8131. http://dx.doi.org/10.1126/sciadv.aau8131.
Pełny tekst źródłaShin, Sung-Won, Wooju Jung, Changhoon Choi, Shin-Yeong Kim, Arang Son, Hakyoung Kim, Nohyun Lee i Hee Park. "Fucoidan-Manganese Dioxide Nanoparticles Potentiate Radiation Therapy by Co-Targeting Tumor Hypoxia and Angiogenesis". Marine Drugs 16, nr 12 (15.12.2018): 510. http://dx.doi.org/10.3390/md16120510.
Pełny tekst źródłaHATTA, F. F., T. I. T. KUDIN, R. H. Y. SUBBAN, A. M. M. ALI, M. K. HARUN i M. Z. A. YAHYA. "PLASTICIZED PVA/PVP–KOH ALKALINE SOLID POLYMER BLEND ELECTROLYTE FOR ELECTROCHEMICAL CELLS". Functional Materials Letters 02, nr 03 (wrzesień 2009): 121–25. http://dx.doi.org/10.1142/s179360470900065x.
Pełny tekst źródłaSubagio, Agus, Priyono, Pardoyo, Aswardi, R. Yudianti, A. Subhan i E. Taer. "AC-MnO2-CNT Composites for Electrodes of Electrochemical Supercapacitors". Materials Science Forum 827 (sierpień 2015): 113–18. http://dx.doi.org/10.4028/www.scientific.net/msf.827.113.
Pełny tekst źródłaDuan, Lu-Ying, Jin-Wen Liu, Ru-Qin Yu i Jian-Hui Jiang. "Boronate carbon nanoparticles featuring efficient FRET for activatable two-photon fluorescence imaging of sialic acid surface-abundant tumor cells". Analyst 146, nr 18 (2021): 5567–73. http://dx.doi.org/10.1039/d1an01155c.
Pełny tekst źródłaVijayakumar, Vidyanand, Arun Torris, Maria Kurian, Megha Mary Mathew, Meena Ghosh, Ajay B. Khairnar, Manohar V. Badiger i Sreekumar Kurungot. "A sulfonated polyvinyl alcohol ionomer membrane favoring smooth electrodeposition of zinc for aqueous rechargeable zinc metal batteries". Sustainable Energy & Fuels 5, nr 21 (2021): 5557–64. http://dx.doi.org/10.1039/d1se00865j.
Pełny tekst źródłaLiu, Xinyu, Meron Tsegay Kifle, Hongxin Xie, Liexi Xu, Maoling Luo, Yangyi Li, Zhengrong Huang, Yan Gong, Yuzhou Wu i Conghua Xie. "Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer". Nanomaterials 12, nr 18 (10.09.2022): 3138. http://dx.doi.org/10.3390/nano12183138.
Pełny tekst źródłaZhang, Huanli, Wei Ma, Zhiqiang Wang, Xiaodan Wu, Hui Zhang, Wen Fang, Rui Yan i Yingxue Jin. "Self-Supply Oxygen ROS Reactor via Fenton-like Reaction and Modulating Glutathione for Amplified Cancer Therapy Effect". Nanomaterials 12, nr 14 (21.07.2022): 2509. http://dx.doi.org/10.3390/nano12142509.
Pełny tekst źródłaYeduvaka, Gowri, Robert Spotnitz i Kevin Gering. "Macro-homogenous Modeling of Commercial, Primary Li/MnO2 Coin Cells". ECS Transactions 19, nr 16 (18.12.2019): 1–10. http://dx.doi.org/10.1149/1.3245867.
Pełny tekst źródłaMarple, J. W. "Performance characteristics of Li/MnO2-CFx hybrid cathode jellyroll cells". Journal of Power Sources 19, nr 4 (kwiecień 1987): 325–35. http://dx.doi.org/10.1016/0378-7753(87)87008-8.
Pełny tekst źródłaLin, Gang, Xiaoliang Zhou, Limin Liu, Huangmin Li, Di Huang, Jing Liu, Jie Li i Zhaohuan Wei. "Performance improvement of aqueous zinc batteries by zinc oxide and Ketjen black co-modified glass fiber separators". RSC Advances 13, nr 10 (2023): 6453–58. http://dx.doi.org/10.1039/d2ra07745k.
Pełny tekst źródłaWang, Xiaoyu, i Guanqun Chen. "Localized Hyperthermia Induced by Biogenic Synthesized Manganese Oxide Nanoparticles from Cannabis Sativa for Glioblastoma Photothermal Therapy". Journal of Biomedical Nanotechnology 18, nr 5 (1.05.2022): 1443–48. http://dx.doi.org/10.1166/jbn.2022.3349.
Pełny tekst źródłaCho, Jungsang, Gautam Ganapati Yadav, Meir Weiner, Jinchao Huang, Aditya Upreti, Xia Wei, Roman Yakobov i in. "Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn–MnO2 Batteries for Use in Solar Microgrids". Polymers 14, nr 3 (20.01.2022): 417. http://dx.doi.org/10.3390/polym14030417.
Pełny tekst źródłaMuddemann, Thorben, Dennis Haupt, Bolong Jiang, Michael Sievers i Ulrich Kunz. "Investigation and Improvement of Scalable Oxygen Reducing Cathodes for Microbial Fuel Cells by Spray Coating". Processes 8, nr 1 (19.12.2019): 11. http://dx.doi.org/10.3390/pr8010011.
Pełny tekst źródłaZhang, Luman, Xuan Zhang, Jian Wang, David Seveno, Jan Fransaer, Jean-Pierre Locquet i Jin Won Seo. "Carbon Nanotube Fibers Decorated with MnO2 for Wire-Shaped Supercapacitor". Molecules 26, nr 11 (7.06.2021): 3479. http://dx.doi.org/10.3390/molecules26113479.
Pełny tekst źródłaWoon, Chee Wai, Huei Ruey Ong, Kwok Feng Chong, Kar Min Chan i Md Maksudur Rahman Khan. "MnO2/CNT as ORR Electrocatalyst in Air-Cathode Microbial Fuel Cells". Procedia Chemistry 16 (2015): 640–47. http://dx.doi.org/10.1016/j.proche.2015.12.003.
Pełny tekst źródłaZhang, G. Q., i X. G. Zhang. "MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells". Electrochimica Acta 49, nr 6 (marzec 2004): 873–77. http://dx.doi.org/10.1016/j.electacta.2003.09.039.
Pełny tekst źródłaValipour, Alireza, Nazanin Hamnabard, Seyed Mohammad Hadi Meshkati, Mahyar Pakan i Young-Ho Ahn. "Effectiveness of phase- and morphology-controlled MnO2 nanomaterials derived from flower-like δ-MnO2 as alternative cathode catalyst in microbial fuel cells". Dalton Transactions 48, nr 16 (2019): 5429–43. http://dx.doi.org/10.1039/c9dt00520j.
Pełny tekst źródłaMyers, Judith M., i Charles R. Myers. "Genetic Complementation of an Outer Membrane Cytochrome omcB Mutant of Shewanella putrefaciens MR-1 Requires omcB Plus Downstream DNA". Applied and Environmental Microbiology 68, nr 6 (czerwiec 2002): 2781–93. http://dx.doi.org/10.1128/aem.68.6.2781-2793.2002.
Pełny tekst źródła