Rozprawy doktorskie na temat „Multivariate Ratio”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 43 najlepszych rozpraw doktorskich naukowych na temat „Multivariate Ratio”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
North, Robert. "Applications of the dependence ratio association measure for multivariate categorical data". Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/378642/.
Pełny tekst źródłaLiang, Yuli. "Contributions to Estimation and Testing Block Covariance Structures in Multivariate Normal Models". Doctoral thesis, Stockholms universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-115347.
Pełny tekst źródłaKarawatzki, Roman, Josef Leydold i Klaus Pötzelberger. "Automatic Markov Chain Monte Carlo Procedures for Sampling from Multivariate Distributions". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/1400/1/document.pdf.
Pełny tekst źródłaSeries: Research Report Series / Department of Statistics and Mathematics
Sheppard, Therese. "Extending covariance structure analysis for multivariate and functional data". Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/extending-covariance-structure-analysis-for-multivariate-and-functional-data(e2ad7f12-3783-48cf-b83c-0ca26ef77633).html.
Pełny tekst źródłaWang, Sai. "GLR Control Charts for Monitoring the Mean Vector or the Dispersion of a Multivariate Normal Process". Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77227.
Pełny tekst źródłaPh. D.
Karawatzki, Roman, i Josef Leydold. "Automatic Markov Chain Monte Carlo Procedures for Sampling from Multivariate Distributions". Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/294/1/document.pdf.
Pełny tekst źródłaSeries: Preprint Series / Department of Applied Statistics and Data Processing
Bhatia, Krishan. "USE OF NEAR INFRARED SPECTROSCOPY AND MULTIVARIATE CALIBRATION IN PREDICTING THE PROPERTIES OF TISSUE PAPER MADE OF RECYCLED FIBERS AND VIRGIN PULP". Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1077768497.
Pełny tekst źródłaYamane, Danilo Ricardo [UNESP]. "Nutrient diagnosis of orange crops applying compositional data analysis and machine learning techniques". Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/180576.
Pełny tekst źródłaApproved for entry into archive by Tatiana Camila Gricio (tatiana.gricio@unesp.br) on 2019-01-28T17:32:17Z (GMT) No. of bitstreams: 1 yamane_dr_dr_jabo.pdf: 2814108 bytes, checksum: f2e102e5809427e8d3d26d0a59971542 (MD5)
Made available in DSpace on 2019-01-28T17:32:17Z (GMT). No. of bitstreams: 1 yamane_dr_dr_jabo.pdf: 2814108 bytes, checksum: f2e102e5809427e8d3d26d0a59971542 (MD5) Previous issue date: 2018-11-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O manejo eficiente de nutrientes é crucial para atingir alta produtividade de frutos. Resultados da análise do tecido são comumente interpretados usando faixas críticas de concentração de nutrientes (CNCR) e Sistema Integrado de Diagnose e Recomendação (DRIS) em culturas de laranja. No entanto, ambos os métodos ignoram as propriedades inerentes à classe dos dados composicionais, não considerando adequadamente as interações de nutrientes e a influência varietal na composição nutricional da planta. Portanto, ferramentas eficazes de modelagem são necessárias para corrigir vieses e incorporar efeitos genéticos na avaliação do estado nutricional. O objetivo deste estudo foi desenvolver uma abordagem diagnóstica precisa para avaliar o estado nutricional de variedades de copa de laranjeira (Citrus sinensis), usando a análise composicional dos dados e algoritmos de inteligência artificial. Foram coletadas 716 amostras foliares de ramos frutíferos em pomares comerciais de laranjeiras não irrigadas (“Valência”, “Hamlin”, “Pera”, “Natal”, “Valencia Americana” e “Westin”) distribuídos pelo estado de São Paulo (Brasil), analisadas as concentrações de N, S, P, K, Ca, Mg, B, Cu, Zn, Mn e Fe, e avaliadas as produções de frutos. Balanços de nutrientes foram computados como relações-log isométricas (ilr). Análises discriminantes dos valores de ilr diferenciaram os perfis de nutrientes das variedades de copa, indicando composições nutricionais específicas. A acurácia diagnóstica dos balanços de nutrientes atingiu 88% com a produtividade de corte correspondente a 60 t ha-1, utilizando-se ilrs e o algoritmo de classificação knn, o que possibilitou o desenvolvimento de padrões nutricionais confiáveis para a obtenção de elevado nível de produtividade de frutos. Os citricultores do estado de São Paulo devem adotar o conceito de balanços de nutrientes, onde grupos de nutrientes estão equilibrados de maneira ideal. Fornecer mais Ca através de calcário ou gesso, reduzir as aplicações de fertilizantes P e K, e aumentar a fertilização de B via solo pode reequilibrar os balanços [Mg | Ca], [Ca, Mg | K], [P | N, S], [K, Ca, Mg | N, S, P] e [B | N, S, P, K, Ca, Mg] em pomares de laranjas com produtividade inferior a 60 t ha-1. O software “CND-Citros” pode auxiliar os citricultores, engenheiros agrônomos e técnicos a diagnosticar o estado nutricional das lavouras de laranja com base no método proposto, utilizando os resultados da análise química das folhas.
Efficient nutrient management is crucial to attain high fruit productivity. Results of tissue analysis are commonly interpreted using critical nutrient concentration ranges (CNCR) and Diagnosis and Recommendation Integrated System (DRIS) on orange crops. Nevertheless, both methods ignore the inherent properties of compositional data class, not accounting adequately for nutrient interactions and varietal influence on plant ionome. Therefore, effective modeling tools are needed to rectify biases and incorporate genetic effects on nutrient composition. The objective of this study was to develop an accurate diagnostic approach to evaluate the nutritional status across orange (Citrus sinensis) canopy varieties using compositional data analysis and machine learning algorithms. We collected 716 foliar samples from fruit-bearing shoots in plots of non-irrigated commercial orange orchards (“Valencia”, “Hamlin”, “Pera”, “Natal”, “Valencia Americana” and “Westin”) distributed across São Paulo state (Brazil), analyzed N, S, P, K, Ca, Mg, B, Cu, Zn, Mn and Fe, and measured fruit yields. Sound nutrient balances were computed as isometric log-ratios (ilr). Discriminant analysis of ilr values differentiated the nutrient profiles of canopy varieties, indicating plant-specific ionomes. Diagnostic accuracy of nutrient balances reached 88% about cutoff yield of 60 Mg ha-1 using ilrs and a k-nearest neighbors classification, allowing the development of reliable nutritional standards at high fruit yield level. Citrus growers from São Paulo state should adopt the concept of yield-limiting nutrient balances, where groups of nutrients are optimally balanced. Supplying more Ca as lime or gypsum materials, reducing the P and K fertilizer applications and enhancing soil B fertilization could re-establish the [Mg | Ca], [Ca, Mg | K], [P | N, S], [K, Ca, Mg | N, S, P] and [B | N, S, P, K, Ca, Mg] balances in orange orchards yielding less than 60 Mg ha-1. The software “CND-Citros” can assist citrus growers, agronomy engineers and technicians to diagnose the nutrient status of orange crops based on the proposed method, using the results of leaf chemical analysis.
Yamane, Danilo Ricardo. "Nutrient diagnosis of orange crops applying compositional data analysis and machine learning techniques /". Jaboticabal, 2018. http://hdl.handle.net/11449/180576.
Pełny tekst źródłaResumo: O manejo eficiente de nutrientes é crucial para atingir alta produtividade de frutos. Resultados da análise do tecido são comumente interpretados usando faixas críticas de concentração de nutrientes (CNCR) e Sistema Integrado de Diagnose e Recomendação (DRIS) em culturas de laranja. No entanto, ambos os métodos ignoram as propriedades inerentes à classe dos dados composicionais, não considerando adequadamente as interações de nutrientes e a influência varietal na composição nutricional da planta. Portanto, ferramentas eficazes de modelagem são necessárias para corrigir vieses e incorporar efeitos genéticos na avaliação do estado nutricional. O objetivo deste estudo foi desenvolver uma abordagem diagnóstica precisa para avaliar o estado nutricional de variedades de copa de laranjeira (Citrus sinensis), usando a análise composicional dos dados e algoritmos de inteligência artificial. Foram coletadas 716 amostras foliares de ramos frutíferos em pomares comerciais de laranjeiras não irrigadas (“Valência”, “Hamlin”, “Pera”, “Natal”, “Valencia Americana” e “Westin”) distribuídos pelo estado de São Paulo (Brasil), analisadas as concentrações de N, S, P, K, Ca, Mg, B, Cu, Zn, Mn e Fe, e avaliadas as produções de frutos. Balanços de nutrientes foram computados como relações-log isométricas (ilr). Análises discriminantes dos valores de ilr diferenciaram os perfis de nutrientes das variedades de copa, indicando composições nutricionais específicas. A acurácia diagnóstica dos balanços de... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Efficient nutrient management is crucial to attain high fruit productivity. Results of tissue analysis are commonly interpreted using critical nutrient concentration ranges (CNCR) and Diagnosis and Recommendation Integrated System (DRIS) on orange crops. Nevertheless, both methods ignore the inherent properties of compositional data class, not accounting adequately for nutrient interactions and varietal influence on plant ionome. Therefore, effective modeling tools are needed to rectify biases and incorporate genetic effects on nutrient composition. The objective of this study was to develop an accurate diagnostic approach to evaluate the nutritional status across orange (Citrus sinensis) canopy varieties using compositional data analysis and machine learning algorithms. We collected 716 foliar samples from fruit-bearing shoots in plots of non-irrigated commercial orange orchards (“Valencia”, “Hamlin”, “Pera”, “Natal”, “Valencia Americana” and “Westin”) distributed across São Paulo state (Brazil), analyzed N, S, P, K, Ca, Mg, B, Cu, Zn, Mn and Fe, and measured fruit yields. Sound nutrient balances were computed as isometric log-ratios (ilr). Discriminant analysis of ilr values differentiated the nutrient profiles of canopy varieties, indicating plant-specific ionomes. Diagnostic accuracy of nutrient balances reached 88% about cutoff yield of 60 Mg ha-1 using ilrs and a k-nearest neighbors classification, allowing the development of reliable nutritional standards at high fruit... (Complete abstract click electronic access below)
Doutor
Mahmoud, Mahmoud A. "The Monitoring of Linear Profiles and the Inertial Properties of Control Charts". Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/29544.
Pełny tekst źródłaPh. D.
Andersson, Aron, i Shabnam Mirkhani. "Portfolio Performance Optimization Using Multivariate Time Series Volatilities Processed With Deep Layering LSTM Neurons and Markowitz". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273617.
Pełny tekst źródłaAktiemarknaden är en icke-linjär marknad, men många av de mest kända portföljoptimerings algoritmerna är baserad på linjära modeller. Under de senaste åren har den snabba utvecklingen inom maskininlärning skapat flexibla modeller som kan extrahera information ur komplexa mönster. I det här examensarbetet föreslår vi två sätt att optimera en portfölj, ett där ett neuralt nätverk utvecklas med avseende på multivariata tidsserier och ett annat där vi använder den linjära Markowitz modellen, där vi även lägger ett exponentiellt rörligt medelvärde på prisdatan. Ingångsdatan till vårt neurala nätverk är de dagliga slutpriserna, volymerna och marknadsindikatorer som t.ex. volatilitetsindexet VIX. Utgångsvariablerna kommer vara de predikterade priserna för nästa dag, som sedan bearbetas ytterligare för att producera mätvärden såsom förväntad avkastning, volatilitet och Sharpe ratio. LSTM-modellen producerar en portfölj med avkastning och risk som ligger närmre de verkliga marknadsförhållandena, men däremot gav resultatet ett högt felvärde och det visar att vår LSTM-modell är otillräckligt för att använda som ensamt predikteringssverktyg. Med det sagt så gav det ändå en bättre prediktion när det gäller trender än vad vi antog den skulle göra. Vår slutsats är därför att man bör använda flera neurala nätverk som indikatorer, där var och en är ansvarig för någon specifikt aspekt man vill analysera, och baserat på dessa dra en slutsats. Vårt resultat tyder också på att inmatningsdatan bör övervägas mera noggrant, eftersom predikteringsnoggrannheten.
Ribeiro, Ana Karenina Fernandes de Sousa. "Atributos de solos sob sistemas de uso agropecuários na mesorregião do Oeste Potiguar - RN". Universidade Federal Rural do Semi-Árido, 2016. http://bdtd.ufersa.edu.br:80/tede/handle/tede/593.
Pełny tekst źródłaApproved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-03-21T14:51:55Z (GMT) No. of bitstreams: 1 AnaKFSR_DISSERT.pdf: 1693292 bytes, checksum: 36d338aa920da9d3f5c142d94ecbf871 (MD5)
Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-03-21T14:52:02Z (GMT) No. of bitstreams: 1 AnaKFSR_DISSERT.pdf: 1693292 bytes, checksum: 36d338aa920da9d3f5c142d94ecbf871 (MD5)
Made available in DSpace on 2017-03-21T14:52:14Z (GMT). No. of bitstreams: 1 AnaKFSR_DISSERT.pdf: 1693292 bytes, checksum: 36d338aa920da9d3f5c142d94ecbf871 (MD5) Previous issue date: 2016-10-11
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The semi-arid region is extremely diverse from the point of view of their natural resources which vary according to factors such as location, soil types, lithology and climate. However, it is perceived fragility of the region under study with regard to human action, making it more susceptible site to degradation processes. Studies evaluating soil properties in Oeste Potiguar in the Rio Grande do Norte state are scarce, but its quantification in different uses and environments in an integrated manner is necessary for understanding and subsequent adoption of appropriate practices to local conditions. This study aimed to evaluate the physical and chemical properties in different agricultural uses, detecting the most sensitive in distinguishing environments. The survey was conducted in the cities of Pau dos Ferros, San Francisco West, Mossoro, Governador Dix-Sept Rosado. The areas under study have particular characteristics as to classification of soils and agricultural uses. physical fertility and analysis analyzes were performed as particle size, plasticity limits and liquidity, plasticity index and gravimetric moisture. The results were analyzed by means of multivariate analysis as the main tool, specifically factor analysis and clustering. There was a greater contribution TOC in Gleysol (favoring the increase in P, Ca 2+ and K +), favored by organic waste and poor drainage on the basis of the clay fraction. Soils showed eutrophic character (V> 50%), influenced by lithology, except Latossolo. In Gleysol and Cambisol occurred increase in liquidity limits and plasticity, due to the increase of the clay fraction and total organic carbon, increasing the gravimetric moisture to achieve crispness, with the exception of Planosol that showed low permeability on the horizon B, where the limits of plasticity and liquidity diverged, thus, greater plasticity index. In particle size analysis profiles showed changes in textural classes, especially the Gleysol with the highest silt fraction, and an indication of young soils with little weathering activity. We conclude that the physical attributes moisture, liquid limit, plastic limit, plasticity index clay, fine sand were the most sensitive in the environments distinction and pH chemicals, (H + Al), V, PST. The Planosol showed low permeability in the B horizon, thus having the greatest plasticity index distancing the limits between them. The areas studied showed acidity to alkalinity reactions with the presence of Al 3+ and (H + Al) and high salinity. The source material favored the increase in calcium, sodium, magnesium and potassium
A região semiárida é extremamente diversificada do ponto de vista de seus recursos naturais que variam de acordo com fatores como localização, tipos de solo, litologia e clima. No entanto, percebe-se fragilidade da região em estudo no que diz respeito à ação antrópica, tornando o local mais susceptível aos processos de degradação. Estudos avaliando atributos do solo na mesorregião do Oeste Potiguar no estado do Rio Grande do Norte são escassos, porém, sua quantificação em diferentes usos e ambientes, de forma integrada se faz necessária para o entendimento e consequente adoção de práticas adequadas às particularidades locais. Este estudo teve como objetivo avaliar os atributos físicos e químicos em diferentes usos agropecuários, detectando os mais sensíveis na distinção dos ambientes. A pesquisa foi realizada nos municípios de Pau dos Ferros, São Francisco do Oeste, Mossoró, Governador Dix-Sept Rosado. As áreas em estudo possuem características particulares quanto à classificação de seus solos e usos agropecuários. Foram realizadas análises de fertilidade e análises físicas como granulometria, limites de plasticidade e liquidez, índice de plasticidade e umidade gravimétrica. Os resultados foram interpretados por meio de técnicas de análise multivariada como ferramenta principal, especificamente a Análise Fatorial e agrupamento. Verificou-se um maior aporte de COT no Gleissolo (que favoreceu o aumento nos teores de P, Ca 2+ e K +), favorecido pelos resíduos orgânicos e má drenagem em função da fração argila. Os solos apresentaram caráter eutrófico (V> 50%), influenciados pela litologia, com exceção do Latossolo. No Gleissolo e Cambissolo ocorreram aumento nos limites de liquidez e plasticidade, em razão do aumento da fração argila e do carbono orgânico total, com aumento da umidade gravimétrica para atingir a friabilidade, com exceção, do Planossolo que apresentou baixa permeabilidade no horizonte B, onde os limites de plasticidade e liquidez se distanciaram, tendo assim, maior índice de plasticidade. Na análise granulométrica os perfis apresentaram variações nas classes texturais, com destaque para o Gleissolo que apresentou maior fração silte, sendo um indicativo de solos jovens com pouca atividade intempérica. Conclui-se que os atributos físicos umidade, limite de liquidez, limite de plasticidade, índice de plasticidade argila, areia fina foram os mais sensíveis na distinção dos ambientes e os químicos pH, (H+ Al ), V, PST. O Planossolo apresentou baixa permeabilidade no horizonte B, tendo assim o maior índice de plasticidade distanciando os limites entre si. As áreas estudadas apresentaram reações de acidez à alcalinidade com presença de Al3+ e (H + Al) e com elevada salinidade. O material de origem favoreceu o aumento nos teores de cálcio, sódio, magnésio e potássio
2017-01-31
Larroza, Eliane Gonçalves. "Caracterização das nuvens cirrus na região metropolitana de São Paulo (RMSP) com a técnica de Lidar de retroespalhamento elástico". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-19122011-153154/.
Pełny tekst źródłaThis pioneer work in Brazil, aimed at investigating cirrus clouds in the metropolitan region of São Paulo (23.33 ºS / 46.44 ºW), SP, observed by the MSP-Lidar system in June and July 2007. During this period, cirrus clouds were observed during approximately 54% of the time of all Lidar measurements available. The Lidar provided measurements with high spatial and temporal resolution measurements of these clouds that allowed characterizing and classifying them according to their macro-and microphysical properties. For such parameters, a unique methodology was developed for the Lidar data retrieval and a robust statistic was applied to determine the different classes of cirrus. The following steps were adopted to characterize the observations: (a) the determination of stationary periods (or observations) during the time evolution of cirrus detection, (b) determination of the base and top of clouds through a so called threshold value to derive the macrophysical variables (altitude, temperature, geometrical thickness), (c) the application of the transmittance method for each layer and the determination of cloud microphysical variables (optical depth and Lidar ratio). In this process, the Lidar ratio is calculated iteratively until a convergence of this value is achieved. Multivariate statistical analyses were performed to determine the classes of cirrus. These classes are based on geometric thickness, average altitude and the respective temperature, relative altitude (difference between tropopause height and cloud top) and optical depth. The successive use of Principal Component Analysis (PCA), Hierarchical Clustering Method (HCM) and Discriminant Analysis (DA) allowed the identification of four classes of cirrus. It is important to point out here that such methods were applied only to cases identified as single layers of clouds, due to the rare occurrence of multilayered clouds. The origin of formation for the four cirrus classes, though they have distinct macro-and microphysical properties, was found to be basically the same, i.e., from the injection of water vapor in the atmosphere provided by frontal systems, followed by the cooling process to form ice crystals. The same formation mechanism is also attributed to the subtropical jet. An analysis of the temperature profile and comparison with the literature showed that the cirrus crystals possibly have the form of hexagonal plates and columns. The Lidar Ratio (LR) was also found to be in accordance with the literature.
Hosler, Deborah Susan. "Models and Graphics in the Analysis of Categorical Variables: The Case of the Youth Tobacco Survey". [Johnson City, Tenn. : East Tennessee State University], 2002. http://etd-submit.etsu.edu/etd/theses/available/etd-0716102-095453/unrestricted/HoslerD080202.pdf.
Pełny tekst źródłaJaradat, Rasheed Abdelkareem. "Prediction of reservoir properties of the N-sand, vermilion block 50, Gulf of Mexico, from multivariate seismic attributes". Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2236.
Pełny tekst źródłaLISBOA, Francy Junio Gon?alves. "Uso da abordagem estat?stica procrusteana em Ecologia de Solo: caso de estudo envolvendo sistema de integra??o lavoura-pecu?ria-floresta no Cerrado". Universidade Federal Rural do Rio de Janeiro, 2015. https://tede.ufrrj.br/jspui/handle/jspui/1570.
Pełny tekst źródłaMade available in DSpace on 2017-05-02T21:19:46Z (GMT). No. of bitstreams: 1 2015 - Francy Junio Gon?alves Lisboa.pdf: 2939884 bytes, checksum: c4aa4152d0d3ca90c85ecb78ff7e5da6 (MD5) Previous issue date: 2015-02-25
CAPES
This thesis is part of a multiple scientific effort seeking to support the replacement of degraded brazilian pastures by systems which integrate different land use types such as crop, pasture, and forest plantation (collectively known as iCLF systems). Here, the focus was also to discuss the potentialities of an unusual statistical multivariate approach called ?Procrustes Analysis? in the plant and soil ecology framework. The current thesis has three chapters through which details of the Procrustes analysis are presented on both technically e intuitively manner. The first chapter describes roadmaps showing how the procrustean residual vector (so-called PAM: Procrustean association metric), representing the multivariate correlation between two or more data tables, can be used as an univariate variable in more user-traditional statistical approaches such as ecological ordination, regression analysis and ANOVA followed by mean comparisons. The second chapter discussed a case study and had as the general objective to use PAMs, depicting the relationships between distance matrices from individual soil microbial structure (PLFA: Phospholipids Fatty Acid) and distance matrices form soil properties variables (chemical and physic), as response variables in an ANOVA framework with land use type as categorical predictor (degraded pasture, improved pasture, native fragment and iCLF system). The hypothesis in this case was that the fungi:bacteria ratio given by PLFA analysis, a good index of changes in microbial structure as response to land use alteration and associated to more conservative soils in terms of carbon mineralization, is favored by the man ? introduced vegetal heterogeneity which characterizes the integration crop ? livestock ? forest. The last chapter was entirely dedicated to answer some technical questions which arose after the publication of the first chapters. Basically the two most common questions were: i) Does the increasing number of columns/variables within a data table affect Procrustes outcomes? ii) Can the procrustean residual vector, the PAM, translate differences between treatments in terms of multivariate correlation as it is used in mean comparisons? Specifically for these questions, Procrustes was useful in supporting iCLF systems as potential alternative to degraded pasture by raising insights that the man ? introduced vegetal heterogeneity in such integrated agroecosystem, favor shifts in microbial structure toward fungal dominance.
A presente tese fez parte do esfor?o multinstitucional buscando sustentar a substitui??o de pastagens degradas por sistemas que integrem diferentes tipos de uso da terra, mais especificamente aqueles integrando lavoura, pastagem, e floresta plantada, coletivamente: sistemas iLPF. Aqui, o foco foi a explora??o das potencialidades da abordagem estat?stica denominada an?lise Procrutes, ou simplesmente Procrustes, na seara de ecologia de planta e solo. Basicamente, a tese foi composta por tr?s cap?tulos onde ? descrito com detalhes os principais nuances dessa abordagem multivariada ainda pouco utilizada por ecologistas de planta e solo. O primeiro cap?tulo descreve roteiros esquem?ticos mostrando como o vetor de res?duos derivado da correla??o e duas tabelas de dados pela an?lise Procrustes (chamado PAM: Procrustes association metric) pode ser utilizado como representante univariado da correla??o em outras abordagens estat?sticas (ordena??o ecol?gica, regress?o, e ANOVA seguida de teste de m?dias). O segundo cap?tulo da tese, utilizando sugest?es do primeiro cap?tulo, tratou de um estudo de caso. Neste caso, fazenda experimental situada no munic?pio de Cachoeira dourada ? GO, e contendo quatro diferentes tipos de uso da terra, dentre os quais um sistema iLPF, foi escolhida para a condu??o do estudo de caso. O objetivo geral foi acessar como correla??es, no formato de PAM, entre tabelas de dados representadas por vari?veis individuais de estrutura microbiana (dada por an?lise de lip?dios oriundos do solo; PLFA: Phospholipids Fatty Acid) e propriedades individuais de qu?mica e f?sica de solo, eram moduladas pelo tipo de uso da terra: pastagem degradada, pastagem melhorada, fragmento de mata nativa, e sistema iLPF. A hip?tese para o estudo de caso foi a de que a rela??o fungo: bact?ria, comumente associada a ambientes mais conservativos, era promovida pelo sistema iLPF uma vez que tais sistemas s?o caracterizados pelo aumento da heterogeneidade vegetal oriunda da sistematizada introdu??o de especies arb?reas em meio a pastagem. O terceiro e ?ltimo cap?tulo da tese foi estritamente dedicado a responder questionamentos t?cnicos referentes ? abordagem procrusteana e surgidos depois das publica??es dos dois primeiros cap?tulos da tese. Neste caso, dois dos questionamentos mais comuns foram abordados. Foram eles: i) quais s?o os efeitos da correla??o entre colunas/vari?veis dentro de uma tabela de dados sobre os resultados da an?lise Procrustes? ii) Pode o vetor de res?duos procrusteanos, a PAM, traduzir diferen?as entre tratamentos em termos da for?a de correla??o multivariada entre duas tabelas de dados? Para o estudo de caso os resultados da corrente tese suportaram os sistemas iLPF como potencial alternativa para substitui??o de pastagens degradadas ao levantar ind?cios de que a heterogeneidade vegetal introduzida nos sistemas iLPF pode favorecer o deslocamento da estrutura microbiana em dire??o ao dom?nio de fungos.
Higgs, Helen. "Price and volatility relationships in the Australian electricity market". Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16404/1/Helen_Higgs_Thesis.pdf.
Pełny tekst źródłaHiggs, Helen. "Price and volatility relationships in the Australian electricity market". Queensland University of Technology, 2006. http://eprints.qut.edu.au/16404/.
Pełny tekst źródłaSistanizadeh, Mohammad K. "Weak narrow-band signal detection in multivariate non-gaussian clutter". Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/71187.
Pełny tekst źródłaPh. D.
Hirk, Rainer, Kurt Hornik i Laura Vana. "Multivariate Ordinal Regression Models: An Analysis of Corporate Credit Ratings". WU Vienna University of Economics and Business, 2017. http://epub.wu.ac.at/5389/1/Report132_lvana.pdf.
Pełny tekst źródłaSeries: Research Report Series / Department of Statistics and Mathematics
Hirk, Rainer, Kurt Hornik i Laura Vana. "Multivariate ordinal regression models: an analysis of corporate credit ratings". Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/s10260-018-00437-7.
Pełny tekst źródłaDeBord, Joshua S. "Predicting the Geographic Origin of Heroin by Multivariate Analysis of Elemental Composition and Strontium Isotope Ratios". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3802.
Pełny tekst źródłaMa, San-San, i Patrick Truong. "The influence of financial ratios on different sectors : A Multivariate Regression of OMXS stocks to determine what financial ratios influence stock growth in different sectors most". Thesis, KTH, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169905.
Pełny tekst źródłaPereira, Fernando. "Analyse spatio-temporelle du champ géomagnétique et des processus d'accélération solaires observés en émission radio". Orléans, 2004. http://www.theses.fr/2004ORLE2011.
Pełny tekst źródłaPENNONI, FULVIA. "Metodi statistici multivariati applicati all'analisi del comportamento dei titolari di carta di credito di tipo revolving". Bachelor's thesis, Universita' degli studi di Perugia, 2000. http://hdl.handle.net/10281/50024.
Pełny tekst źródłaIn this thesis work the use of graphical models is proposed to the analysis of credit scoring. In particular the applied application is related to the behavioural scoring which is defined by Thomas (1999) as ‘the systems and models that allow lenders to make better decisions in managing existing clients by forecasting their future performance’. The multivariate statistical models, named chain graph models, proposed for the application allow us to model in a proper way the relation between the variables describing the behaviour of the holders of the credit card. The proposed models are named chain graph models. They are based on a log-linear expansion of the density function of the variables. They allow to: depict oriented association between subset of variables; to detect the structure which accounts for a parsimonious description of the relations between variables; to model simultaneously more than one response variable. They are useful in particular when there is a partial ordering between variables such that they can be divided into exogenous, intermediate and responses. In the graphical models the independence structure is represented by a graph. The variables are represented by nodes, joint by edges showing the dependence in probability among variables. The missing edge means that two nodes are independent given the other nodes. Such class of models is very useful for the theory which combines them with the expert systems. In fact, once the model has been selected, it is possible to link it to the expert system to model the joint and marginal probability of the variables. The first chapter introduces the most used statistical models for the credit scoring analysis. The second chapter introduces the categorical variables. The information related to the credit card holder are stored in a contingency table. It illustrates also the notion of independence between two variables and conditional independence among more than two variables. The odds ratio is introduced as a measure of association between two variables. It is the base of the model formulation. The third chapter introduces the log-linear and logistic models belonging to the family of generalized linear models. They are multivariate methods allowing to study the association between variables considering them simultaneously. A log-linear parameterization is described in details. Its advantage is also that it allow us to take into account of the ordinal scale on which the categorical variables are measured. This is also useful to find the better categorization of the continuous variables. The results related to the maximum likelihood estimation of the model parameters are mentioned as well as the numerical iterative algorithm which are used to solve the likelihood equations with respect to the unknown parameters. The score test is illustrated to evaluate the goodness of fit of the model to the data. Chapter 4 introduces some main concepts of the graph theory in connection with their properties which allow us to depict the model through the graph, showing the interpretative advantages. The sparsity of the contingency table is also mentioned, when there are many cells. The collapsibility conditions are considered as well. Finally, Chapter 5 illustrates the application of the proposed methodology on a sample composed by 70000 revolving credit card holders. The data are released by a one of biggest Italian financial society working in this sector. The variables are the socioeconomic characteristics of the credit card holder, taken form the form filled by the customer when asking for the credit. Every months the society refines the classification of the customers in active, inactive or asleep according to the balance. The application of the proposed method was devoted to find the existing conditional independences between variables related to the two responses which are the balance of the account at two subsequent dates and therefore to define the profiles of most frequently users of the revolving credit card. The chapter ends with some conclusive remarks. The appendix of the chapter reports the code of the used statistical softwares.
GHILARDELLI, FRANCESCA. "USE OF MULTIVARIATE AND MACHINE LEARNING STATISTICS TO RELATE FEED QUALITY AND SAFETY CHARACTERISTICS TO NUTRIENT UTILIZATION EFFICIENCY AND MILK TRAITS: A HEURISTIC APPROACH". Doctoral thesis, Università Cattolica del Sacro Cuore, 2022. http://hdl.handle.net/10280/119856.
Pełny tekst źródłaAdequate nutritional practices are the basis of profitability and sustainability of animal production and are one of the main factors influencing animal welfare. In addition to the chemical composition, the safety quality, in terms of fermentation quality and microbial contamination, plays an important role in determining the actual palatability and safety of feed. In the current PhD thesis, we addressed, through heuristic method of data and sample collection, the study of interactions between feed quality and impact on animal performance. In particular, the interactions between silage quality and diets were evaluated. Given the complexity of these matrices in terms of microbial populations influencing and driving feed quality, new challenges in nutritional assessment for cattle must move toward multi-parameter assessments that include chemical-biological, microbiological, and safety characterizations. The collection of this information conducted without predetermined aims, has allowed to analyze with multivariate statistics and machine learning techniques the relationships between feed quality and the effects they have on herd performance, proposing new approaches to classify feed quality and nutritional strategies adopted in dairy farms.
Jotta, César Augusto Degiato. "Análise de variância multivariada nas estimativas dos parâmetros do modelo log-logístico para susceptibilidade do capim-pé-de-galinha ao glyphosate". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29112016-163511/.
Pełny tekst źródłaThe national agricultural scenery has become increasingly competitive over the years, maintaining productivity growth at a low operating cost and low environmental impact has been the three most important ingredients in the area. Productivity in turn is a function of several variables, and the weed control is one of these variables to be considered. In this work it is analyzed a dataset of an experiment conducted in the Plant Production Department of ESALQ-USP, Piracicaba - SP. Were evaluated 4 grass chicken\'s feet biotypes from three Brazilian states in three morphological stages with 4 repetitions for each biotype, the response variable used was dry mass (g) and as regressor variable were used the dose of glyphosate in concentrations ranging from 1/16 D to 16 D plus the control without herbicide, wherein D ranges from 480 grams of glyphosate acid equivalent per hectare (g .e a. ha-1) for 2 to 3 stage tillers, 720 grams of glyphosate acid equivalent per hectare (g .e a. ha-1) for 6 to 8 tillers and 960 for stage 10-12 tillers. The work had as main objective to evaluate , if over the years, populations of grass chicken\'s feet has become resistant to glyphosate, aiming detection of resistant biotypes. The experiment was conducted under completely randomized design being done in three stages. For data analysis was used the non-linear log-logistic proposed in Knezevic, S. e Ritz (2007) as univariate method, it was still used the maximum likelihood method to verify the equality of the parameter e. The model converged to almost all repetitions, but there was an observed systematic behavior to explain the non-convergence of a particular repetition. Secondly, estimates of the three model parameters were taken as dependent variables in a multivariate analysis of variance. Noting that all three together, were significant by Pillai, Wilks, Roy and Hotelling-Lawley tests, was performed Tukey test for the same parameter e and compared with the first method. This procedure presented, with the same coefficient of significance, less able to identify differences between the means of the parameters of grass varieties than the method proposed by Regazzi (2015).
Russo, Cibele Maria. ""Análise de um modelo de regressão com erros nas variáveis multivariado com intercepto nulo"". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01082006-214556/.
Pełny tekst źródłaTo analyze some characteristics of interest in a real odontological data set presented in Hadgu & Koch (1999), we propose the use of a multivariate null intercept errors-in-variables regression model. This data set is composed by measurements of dental plaque index (with measurement errors), which were measured in volunteers who were randomized to two experimental mouth rinses (A and B) or a control mouth rinse. The measurements were taken in each individual, before and after the use of the respective mouth rinses, in the beginning of the study, after three months from the baseline and after six months from the baseline. In this case, a possible structure of dependency between the measurements taken within the same individual must be incorporated in the model. After presenting the statistical model, we obtain the maximum likelihood estimates of the parameters using the numerical algorithm EM, and we test the hypotheses of interest considering asymptotic tests (Wald, likelihood ratio and score). Also, a simulation study to verify the behavior of these three test statistics is presented, considering diferent sample sizes and diferent values for the parameters. Finally, we make a diagnostic study to identify possible influential observations in the model, considering the local influence approach proposed by Cook (1986) and the conformal normal curvature proposed by Poon & Poon (1999).
Schwab, Nicolas Vilczaki 1986. "Determinação de dióxido de titânio em cremes dentais por fluorescência de raios X e calibração multivariada". [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/248800.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-17T19:39:49Z (GMT). No. of bitstreams: 1 Schwab_NicolasVilczaki_M.pdf: 3711398 bytes, checksum: e20932b11edb933d211e62ceba8679a8 (MD5) Previous issue date: 2011
Resumo: O método de parâmetros fundamentais (PF), embora muito eficaz para a determinação elementar em fluorescência de raios X (FRX) em análise de amostras simples (como ligas e misturas de óxidos), é inviável para a quantificação em matrizes complexas, como cremes dentais. Por outro lado, ao contrário do método de PF, a quimiometria evita cálculos de coeficientes teóricos, relacionados à matriz da amostra e às características geométricas e instrumentais, permitindo ao sistema obter modelos com maior habilidade de previsão. Esse trabalho propõe uma metodologia para determinação de dióxido de titânio diretamente em pastas de dente com uso de calibração multivariada (PLS), usando como pré-tratamento das amostras em alguns casos, apenas a homogeneização e requerendo somente 5 minutos para a análise. Para construção do modelo foram analisadas 22 amostras de diversas marcas e tipos. O método proposto envolveu a utilização de espectros de FRX de pastas de dente e quimiometria, usando como valores de referência os obtidos pelo método de Parâmetros Fundamentais para as cinzas das mesmas amostras, método que requer pelo menos 8 horas para cada análise. Oito variáveis latentes foram necessárias para descrever o conjunto, tornando o modelo adequado para realizar análises diretas para as diferentes marcas encontradas no comércio brasileiro, sem que ocorra sobreajuste no modelo. Ele foi capaz de prever o teor de dióxido de titânio em amostras externas com erros de até 16% para 100 s e 9% para 700 s de irradiação; no entanto, sem diferença significativa entre os métodos, evidenciada estatisticamente pelo teste t, com 95% de confiança. Dessa forma, pode-se afirmar que a proposta é eficaz para a determinação de teores de TiO2 em matrizes complexas como as pastas de dentes, de forma rápida e com o mínimo preparo de amostra
Abstract: The direct application of a fundamental parameters method in elemental determinations using X-ray fluorescence is not feasible for complex samples, like dentifrices or toothpastes, as it is for simpler samples, like alloys or mixtures of elemental oxides. However, instead of fundamental parameters method, chemometric methods, not based on the uncertainness of theoretical coefficients related to sample matrices and of geometrical and instrumental parameters, allow obtaining models with adequate prediction abilities. This work proposes a methodology to determine titanium dioxide contents directly in toothpastes, by applying Partial Least Square Regression, having as sample pretreatment just its homogenization, when required. The analytical frequency is very high, ca. 24 samples per hour. Twenty-two toothpaste samples having different Brazilian brand names and in diverse presentations were used to build and validate the model. Direct X-ray Fluorescence toothpaste spectra and chemometrics were considered, where the reference values of their TiO2 concentrations were obtained from fundamental parameters data of the ash of the same samples, requiring 8 hours to be obtained. Eight latent variables are necessary to describe the whole sample set and the Partial Least Square Regression model be able to make direct analysis of the different samples found on the Brazilian market, without over-fitting the model. The Partial Least Square Regression model is able to predict the content of TiO2 in external samples with average errors until 16% for 100 s and 9% for 700 s of irradiation, however, no significant difference between the methods, as statistically indicated by t-test, with 95% of confidence. The advantages of the proposed approach are mainly its speed, minimum sample preparation and robustness
Mestrado
Quimica Analitica
Mestre em Química
PERIRA, Fernando. "Analyse spatio-temporelle du champ géomagnétique et des processus d'accélération solaires observés en émission radio". Phd thesis, Université d'Orléans, 2004. http://tel.archives-ouvertes.fr/tel-00006128.
Pełny tekst źródłaBrito, Geysa Barreto. "Estratégias para determinação direta de elementos químicos em amostras de macroalgas marinhas por técnicas espectroanalíticas". Instituto de Química, 2015. http://repositorio.ufba.br/ri/handle/ri/19131.
Pełny tekst źródłaApproved for entry into archive by Ana Hilda Fonseca (anahilda@ufba.br) on 2016-05-10T14:24:31Z (GMT) No. of bitstreams: 1 tese fim colegiado.pdf: 4277452 bytes, checksum: 6964bedb598d459a8ae309af6de4f9e6 (MD5)
Made available in DSpace on 2016-05-10T14:24:31Z (GMT). No. of bitstreams: 1 tese fim colegiado.pdf: 4277452 bytes, checksum: 6964bedb598d459a8ae309af6de4f9e6 (MD5)
CNPq e FAPESB
Este trabalho, desenvolvido no Grupo de Pesquisa em Química Analítica da UFBA, se encontra dentro do âmbito da FAPESB, no projeto Avaliação da Poluição e Identificação de Processos de Recuperação para Regiões de Manguezais sob Influência de Atividades Industriais na Baía de Todos os Santos, e teve por objetivo o estudo e desenvolvimento de dois métodos para determinação direta de elementos químicos em macroalgas marinhas. Esses organismos estão sendo utilizadas com êxito no monitoramento da qualidade ambiental e na biorremediação de contaminação aquática. Além disso, possuem elevado valor nutricional e grande potencial na fabricação de biocombustíveis. Diante de sua importância ambiental, nutricional e energética, o estudo de sua composição mineral é importante para avaliação de potenciais aplicações e consequências. Muitos trabalhos têm sido desenvolvidos visando a determinação qualitativa e quantitativa de elementos químicos, em concentrações macro, micro e traço nas macroalgas, porém poucos são os trabalhos descritos na literatura usando métodos diretos de análise. A aplicação de métodos de análise direta de amostras sólidas é uma alternativa viável para diminuição de custos, consumo de reagentes, tempo de análise, geração de resíduos, além de minimizar a manipulação da amostra, evitando perdas de analitos e contaminação. As técnicas de fluorescência de raios X por energia dispersiva (EDXRF) e espectroscopia de emissão em plasma induzido por laser (LIBS) foram avaliadas para a determinação elementar em amostras de macroalgas marinhas. A principal dificuldade dessas técnicas para a análise direta de sólidos é estabelecer a estratégia de calibração externa, pois amostras sólidas podem ser heterogêneas, apresentar superfícies pouco uniformes, aliadas à falta de padrões compatíveis com as matrizes estudadas. Esses fatores acabam interferindo na exatidão, precisão e confiabilidade do método. Por isso, alternativas de calibração com uso de amostras de mesma matriz e análise multivariada foram aplicadas. Para verificação da eficiência das estratégias propostas, um método validado a partir de decomposição ácida de amostra assistida por radiação micro-ondas com determinação por espectrometria de emissão óptica com plasma acoplado indutivamente (ICP OES) foi utilizado para comparação de resultados, além do uso de sete materiais de referência certificados (CRMs) de diferentes materiais vegetais. A EDXRF possibilitou a determinação de Ca, K e Mg. Os valores de r2 dos modelos de calibração, precisão (%) para n=10, LOQ (µg g-1) e faixa de recuperação (%) em diferentes CRMs foram para: Ca (0,9233, 2,07, 109,5 e 85,0-89,3), K (0,9964, 3,82, 207,0 e 126,6-129,6) e Mg (0,9432, 4,07, 195,6 e 92,7-115,4). Por outro lado, LIBS, com uso de regressão multivariada por PLS (regressão por mínimos quadrados parciais) gerou modelos de validação com dados de número de variáveis, variáveis latentes (VLs), erro médio da validação cruzada (RMSECV, em µg g-1), r2 e faixa recuperação (%) para os CRMs de: 55, 3, 9094, 0,9174 e 124-134 (Ca); 75, 1, 4264, 0,9626 e 84-90,7 (K); 235, 1, 1315, 0,5299 e 60-4953 (Mg); e 180, 2, 2580, 0,9781 e
Nicollin, Florence. "Traitement de profils sismiques "ECORS" par projection sur le premier vecteur propre de la matrice spectrale". Grenoble INPG, 1989. http://www.theses.fr/1989INPG0101.
Pełny tekst źródłaHUANG, YAU-YI, i 黃耀億. "A Comparison of Multivariate Ratio Estimators". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/19315467521060165397.
Pełny tekst źródła國立臺北大學
統計學系
95
This paper aims to compare the multivariate ratio estimators based upon a Monte Carlo approach. The multivariate ratio estimators explored in this paper are derived from univariate ratio estimators which are summarized from previous studies. Except traditional and Hartley & Ross multivariate ratio estimators proposed by Olkin, no other univariate ratio estimators have been extended to multivariate type. Therefore, in this paper following the Olkin’s concept of expanding univariate ratio estimator to multivariate ratio estimator, the multivariate ratio estimators and their variances are derived and extended from the corresponding univariate ratio estimators which are summarized from previous studied. Using Monte Carlo approach the efficiency of the proposed multivariate ratio estimators are then compared based upon bias, variance, and MSE. The simulation results show that all the other ratio estimators have smaller bias than the traditional ratio estimator for estimating the population total under both of the univariate or multivariate type. The simulation results also find that the bias can be reduced as sample size increased and the variance of ratio estimators are smaller than variance of the mean per unit for estimating population total. That implies that we can reduce the variance of estimator and increase estimation efficiency by increasing sample size or increasing number of groups.
Yilmaz, Yildiz Elif. "Estimation and Goodness of Fit for Multivariate Survival Models Based on Copulas". Thesis, 2009. http://hdl.handle.net/10012/4571.
Pełny tekst źródłaLiao, Ran. "Joint modeling of bivariate time to event data with semi-competing risk". Diss., 2016. http://hdl.handle.net/1805/12076.
Pełny tekst źródłaSurvival analysis often encounters the situations of correlated multiple events including the same type of event observed from siblings or multiple events experienced by the same individual. In this dissertation, we focus on the joint modeling of bivariate time to event data with the estimation of the association parameters and also in the situation of a semi-competing risk. This dissertation contains three related topics on bivariate time to event mod els. The first topic is on estimating the cross ratio which is an association parameter between bivariate survival functions. One advantage of using cross-ratio as a depen dence measure is that it has an attractive hazard ratio interpretation by comparing two groups of interest. We compare the parametric, a two-stage semiparametric and a nonparametric approaches in simulation studies to evaluate the estimation perfor mance among the three estimation approaches. The second part is on semiparametric models of univariate time to event with a semi-competing risk. The third part is on semiparametric models of bivariate time to event with semi-competing risks. A frailty-based model framework was used to accommodate potential correlations among the multiple event times. We propose two estimation approaches. The first approach is a two stage semiparametric method where cumulative baseline hazards were estimated by nonparametric methods first and used in the likelihood function. The second approach is a penalized partial likelihood approach. Simulation studies were conducted to compare the estimation accuracy between the proposed approaches. Data from an elderly cohort were used to examine factors associated with times to multiple diseases and considering death as a semi-competing risk.
PAI, TSAI-LING, i 白彩綾. "Integrating Dynamic Principal Component Analysis-Decorrelated Residuals with Generalized Likelihood Ratio Test for Autocorrelated Multivariate Process Fault Detection". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/595h64.
Pełny tekst źródła朝陽科技大學
工業工程與管理系
105
Principal Component Analysis (PCA) has been widely used for multivariate process fault detection. PCA can effectively detect process faults under the premise of independent observations. However, the acquired data from a real process usually exhibits autocorrelation characteristics. Therefore, Ku, Storer and Georgakis (1995) suggested to introduce lagged variables into original data matrix and then apply the traditional PCA algorithm to the augmented matrix, they called this method as Dynamic PCA (DPCA). Moreover, Rato and Reis (2013) discovered the T^2 and Q monitoring statistics calculated from DPCA still present autocorrelation. To tackle this issue, Rato and Reis (2013) developed a Dynamic PCA based on Decorrelated Residuals (DPCA-DR) method in an attempt to reduce the autocorrelation of T^2 and Q. Even though the implementation of DPCA-DR can lower the autocorrelation of monitoring metrics, the autocorrelation cannot be exterminated. Furthermore, T^2 and Q are essentially calculated from Mahalanobis distance in which only recent observation was taken into consideration, leading to an ineffective detection of a small process change. According to abovementioned, this study will develop a DPCA-DR-GLR in an effort to detect a wide range of process changes. The DPCA-DR-DR was used to reduce data dimensionality and reduce the autocorrelation of T^2 and Q. The Generalized Likelihood Ratio (GLR) is adopted as the monitoring statistic due to the simultaneous consideration of recent observation and past observations. The advantages of the proposed method includes : 1) can detect a wide range of process changes; 2) can estimate the process change point that will provide practitioner the fault diagnosed information; 3) no further parameters to be given during monitoring. The efficiency of the proposed method will be verified via three examples : a simulated multivariate autocorrelated process, Tennessee Eastman process and White-wine inspection. Result demonstrated that the proposed method can effectively detect multivariate autorrelated process faults.
Chen, Mei-Hua, i 陳美華. "Study of biomarker and diagnostic ratio approaches for oil spill identification- application of modified oil spill identification flowchart with multivariate statistical analysis techniques". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/bj5qg4.
Pełny tekst źródła國立聯合大學
環境與安全衛生工程學系碩士班
99
Oil source tracking and identification related technologies are constantly being developed and applied since oil spill accidents occurred frequently that cause great impact on the environmental and ecological systems as well as the economy. In this study, fresh crude oils from different regions and countries were analyzed and recognized by using chemical fingerprint chromatogram together with source-sensitive diagnostic ratios. Following the proposed oil spill identification flowchart with various appropriate biomarkers and source-specific ratios, it’s possible to identify characteristics of crude oils from unknown resources. Moreover, oil characteristics can be classified even more effectively by multivariate statistical approach such as principal component analysis (PCA), hierarchical cluster analysis (HCA), repeatability limit and student’s t-test to statistically evaluate the imperceptible differences between oils. It was shown that our proposed flowchart of oil spill identification with appropriate biomarkers and diagnostic ratios along with the multivariate statistical analysis techniques were also applied effectively to identify different diesel types, oil-to-oil correlation, and oil source tracking.
Dzikiti, Weston. "Banking sector, stock market development and economic growth in Zimbabwe : a multivariate causality framework". Diss., 2017. http://hdl.handle.net/10500/22818.
Pełny tekst źródłaBusiness Management
M. Com. (Business Management)
Austin, Elizabeth. "Regression Analysis for Ordinal Outcomes in Matched Study Design: Applications to Alzheimer's Disease Studies". 2018. https://scholarworks.umass.edu/masters_theses_2/628.
Pełny tekst źródłaLin, Yen-chun, i 林妍君. "Testing for Constant Hedge Ratios in Futures Markets:A Multivariate GARCH Approach". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46900172873032679154.
Pełny tekst źródła南華大學
經濟學研究所
94
Allowing for a more flexible BEKK form of time-varying volatility and with the day-of-the-week effect embedded in the variance-covariance matrix, the study follows a bivariate GARCH parameterization from Moschini and Myers (2002) to test the hypotheses that the optimal futures hedge ratios of MSCI Taiwan Index futures and TAIFEX Stock Index futures are constant over time. The time period covered is from September 1, 1998 through December 30, 2005, including 1867 daily observations over a span of 2921 calendar days. The empirical results show that the null hypothesis of a constant hedge ratio is statistically significantly rejected and the time-varying optimal hedge ratios cannot be explained solely by the day-of-the-week effect. It is also found that over 80% of the variance of the unhedged portfolios returns can be reduced by the hedging strategies suggested in the study for both MSCI Taiwan Index futures and TAIFEX Stock Index futures.
Yao, Chia-Chu, i 姚嘉初. "Hedge Ratios and Hedging Effectivenesss of Multivariante GARCH Model- Evidence from Taiwan Futures Market". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/03341698904880789632.
Pełny tekst źródła東吳大學
企業管理學系
97
This study using TAIFEX Taiwan stock index futures as a hedging objective trying to eliminate the risk of Taiwan stock index. As the finacial asset is found with ARCH effect in academic research, so that the GARCH model is expected to obtain more effective hedge performance than other models. The optimal hedge ratios are estimated from the OLS model, VAR model, VECM model, and multivariate diagonal Vec GARCH model (MVGARCH). The effectiveness of hedge ratios is measured by using a minimum return variance and maximum utility under different hedging periods. The sample encompasses both series of stock index and futures on a daily basis from August 24, 1998 to December 31, 2008. The results demonstrate that MVGARCH model is with the best hedge performance only in the short term hedge periods. VECM model that is with error correction is demonstrated with higher effectivenesss than VAR model in present research result.
LO, YU-HUI, i 羅玉惠. "INTEGRATING FINANCIAL RATIOS AND CORPORATE GOVERNANCE INDICES TO BUILD THE MODEL OF CREDIT RATING PREDICTION—APPLICATION OF MULTIVARIATE DISCRIMINATE ANALYSIS AND ARTIFICIAL NEURAL NETWORK". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/23148047855524939097.
Pełny tekst źródła國立臺北大學
企業管理學系
95
After the Asian financial crisis in 1997, many well-known enterprises faced with operating crisis and lost investors’ confidence. One of the main reasons is the mechanism of corporate governance not sound enough. Many researches found non-financial information can reflect business crisis better than financial information. The function of credit rating is to evaluate the company’s ability to meet its financial obligations. So it can be seen an indicator of business financial crisis, especially many Tank stocks appear recently in our country. So our research wants to discuss how the non-financial information, corporate governance variables can predict corporate credit rating, and compare difference between two models built by two distinct forecast technologies. The empirical results are as the followings: First our research uses multivariate discriminate analysis to build a predicting model and screen key variables. The empirical result is that the hit ratio of integrating financial ratios and corporate governance indices model is better. Moreover we use Genetic Algorithm extracting final 9 variables with heavy impact on credit ratting result. Besides, more variables belong to corporate governance indices that mean corporate governance is the important information source of business evaluation. Second we compare the forecasting ability of Multivariate Discriminate Analysis model with Artificial Neural Network model. We find the latter model built only by 9 variables but its whole validity (90% hit ratio), internal validity (89.29% hit ratio) and external validity (88.57% hit ratio) all are better than Discriminate Analysis model. In contrast to two models, Artificial Neural Network model have better generality that can provide external stakeholders to apply different sample businesses to forecast risk degree.
Vana, Laura. "Statistical Modeling for Credit Ratings". Thesis, 2018. http://epub.wu.ac.at/6439/1/dissertation_lvana.pdf.
Pełny tekst źródła