Artykuły w czasopismach na temat „Multitask regression”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Multitask regression”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bernard, Elsa, Yunlong Jiao, Erwan Scornet, Veronique Stoven, Thomas Walter i Jean-Philippe Vert. "Kernel Multitask Regression for Toxicogenetics". Molecular Informatics 36, nr 10 (26.09.2017): 1700053. http://dx.doi.org/10.1002/minf.201700053.
Pełny tekst źródłaXin Gu, Fu-Lai Chung, Hisao Ishibuchi i Shitong Wang. "Multitask Coupled Logistic Regression and its Fast Implementation for Large Multitask Datasets". IEEE Transactions on Cybernetics 45, nr 9 (wrzesień 2015): 1953–66. http://dx.doi.org/10.1109/tcyb.2014.2362771.
Pełny tekst źródłaTam, Clara M., Dong Zhang, Bo Chen, Terry Peters i Shuo Li. "Holistic multitask regression network for multiapplication shape regression segmentation". Medical Image Analysis 65 (październik 2020): 101783. http://dx.doi.org/10.1016/j.media.2020.101783.
Pełny tekst źródłaXu, Yong-Li, Di-Rong Chen i Han-Xiong Li. "Least Square Regularized Regression for Multitask Learning". Abstract and Applied Analysis 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/715275.
Pełny tekst źródłaFan, Jianqing, Lingzhou Xue i Hui Zou. "Multitask Quantile Regression Under the Transnormal Model". Journal of the American Statistical Association 111, nr 516 (1.10.2016): 1726–35. http://dx.doi.org/10.1080/01621459.2015.1113973.
Pełny tekst źródłaGoncalves, Andre, Priyadip Ray, Braden Soper, David Widemann, Mari Nygård, Jan F. Nygård i Ana Paula Sales. "Bayesian multitask learning regression for heterogeneous patient cohorts". Journal of Biomedical Informatics: X 4 (grudzień 2019): 100059. http://dx.doi.org/10.1016/j.yjbinx.2019.100059.
Pełny tekst źródłaZhang, Linjuan, Jiaqi Shi, Lili Wang i Changqing Xu. "Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System". Entropy 22, nr 12 (30.11.2020): 1355. http://dx.doi.org/10.3390/e22121355.
Pełny tekst źródłaSchwab, David, Puneet Singla i Sean O’Rourke. "Angles-Only Initial Orbit Determination via Multivariate Gaussian Process Regression". Electronics 11, nr 4 (15.02.2022): 588. http://dx.doi.org/10.3390/electronics11040588.
Pełny tekst źródłaZhang, Heng-Chang, Qing Wu, Fei-Yan Li i Hong Li. "Multitask Learning Based on Least Squares Support Vector Regression for Stock Forecast". Axioms 11, nr 6 (15.06.2022): 292. http://dx.doi.org/10.3390/axioms11060292.
Pełny tekst źródłaRuiz, Carlos, Carlos M. Alaíz i José R. Dorronsoro. "Multitask Support Vector Regression for Solar and Wind Energy Prediction". Energies 13, nr 23 (30.11.2020): 6308. http://dx.doi.org/10.3390/en13236308.
Pełny tekst źródłaMajumdar, Subhabrata, i Snigdhansu Chatterjee. "Non-convex penalized multitask regression using data depth-based penalties". Stat 7, nr 1 (2018): e174. http://dx.doi.org/10.1002/sta4.174.
Pełny tekst źródłaLi, Yi, i A. Adam Ding. "Double‐structured sparse multitask regression with application of statistical downscaling". Environmetrics 30, nr 4 (22.10.2018): e2534. http://dx.doi.org/10.1002/env.2534.
Pełny tekst źródłaShi, Meng, Yu Zheng, Youzhen Wu i Quansheng Ren. "Multitask Attention-Based Neural Network for Intraoperative Hypotension Prediction". Bioengineering 10, nr 9 (31.08.2023): 1026. http://dx.doi.org/10.3390/bioengineering10091026.
Pełny tekst źródłaRosli, Mohd Shafie, Nor Shela Saleh, Baharuddin Aris, Maizah Hura Ahmad i Shaharuddin Md. Salleh. "Ubiquitous Hub for Digital Natives". International Journal of Emerging Technologies in Learning (iJET) 11, nr 02 (23.02.2016): 29. http://dx.doi.org/10.3991/ijet.v11i02.4993.
Pełny tekst źródłaHuang, Xiaoying, Yun Tian, Shifeng Zhao, Tao Liu, Wei Wang i Qingjun Wang. "Direct full quantification of the left ventricle via multitask regression and classification". Applied Intelligence 51, nr 8 (15.01.2021): 5745–58. http://dx.doi.org/10.1007/s10489-020-02130-3.
Pełny tekst źródłaZhao, Sicheng, Hongxun Yao, Yue Gao, Rongrong Ji i Guiguang Ding. "Continuous Probability Distribution Prediction of Image Emotions via Multitask Shared Sparse Regression". IEEE Transactions on Multimedia 19, nr 3 (marzec 2017): 632–45. http://dx.doi.org/10.1109/tmm.2016.2617741.
Pełny tekst źródłaZhang, K., J. W. Gray i B. Parvin. "Sparse multitask regression for identifying common mechanism of response to therapeutic targets". Bioinformatics 26, nr 12 (6.06.2010): i97—i105. http://dx.doi.org/10.1093/bioinformatics/btq181.
Pełny tekst źródłaChen, Kai, Feng Huang i Heming Zhang. "Fan Rotation Speed Real-Time Optimizations of Continuous Annealing Line with Mechanism-Guided Multitask Classification and Regression Model". Journal of Physics: Conference Series 2575, nr 1 (1.08.2023): 012010. http://dx.doi.org/10.1088/1742-6596/2575/1/012010.
Pełny tekst źródłaForouzannezhad, Parisa, Dominic Maes, Daniel S. Hippe, Phawis Thammasorn, Reza Iranzad, Jie Han, Chunyan Duan i in. "Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer". Cancers 14, nr 5 (26.02.2022): 1228. http://dx.doi.org/10.3390/cancers14051228.
Pełny tekst źródłaWistuba-Hamprecht, Jacqueline, Bernhard Reuter, Rolf Fendel, Stephen L. Hoffman, Joseph J. Campo, Philip L. Felgner, Peter G. Kremsner, Benjamin Mordmüller i Nico Pfeifer. "Machine learning prediction of malaria vaccine efficacy based on antibody profiles". PLOS Computational Biology 20, nr 6 (7.06.2024): e1012131. http://dx.doi.org/10.1371/journal.pcbi.1012131.
Pełny tekst źródłaLi, Jiafeng, Lixia Cao i Guoliang Zhang. "Research on automatic matching of online mathematics courses and design of teaching activities based on multiobjective optimization algorithm". PeerJ Computer Science 9 (21.08.2023): e1501. http://dx.doi.org/10.7717/peerj-cs.1501.
Pełny tekst źródłaHe, Dan, David Kuhn i Laxmi Parida. "Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction". Bioinformatics 32, nr 12 (15.06.2016): i37—i43. http://dx.doi.org/10.1093/bioinformatics/btw249.
Pełny tekst źródłaXu, Beilei, Wencheng Wu, Lei Lin, Rachel Melnyk i Ahmed Ghazi. "Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning". Electronic Imaging 2021, nr 3 (18.06.2021): 109–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.3.mobmu-109.
Pełny tekst źródłaLewin, Collin, Erin Kara, Dan Wilkins, Guglielmo Mastroserio, Javier A. García, Rachel C. Zhang, William N. Alston i in. "X-Ray Reverberation Mapping of Ark 564 Using Gaussian Process Regression". Astrophysical Journal 939, nr 2 (1.11.2022): 109. http://dx.doi.org/10.3847/1538-4357/ac978f.
Pełny tekst źródłaNing, Shuluo, i Hyunsoo Yoon. "A New Model for Building Energy Modeling and Management Using Predictive Analytics: Partitioned Hierarchical Multitask Regression (PHMR)". Indoor Air 2024 (11.03.2024): 1–11. http://dx.doi.org/10.1155/2024/5595459.
Pełny tekst źródłaSu, Zhibin, Shige Lin, Luyue Zhang, Yiming Feng i Wei Jiang. "Multitask Learning-Based Affective Prediction for Videos of Films and TV Scenes". Applied Sciences 14, nr 11 (22.05.2024): 4391. http://dx.doi.org/10.3390/app14114391.
Pełny tekst źródłaZhang, Heng-Chang, Qing Wu i Fei-Yan Li. "Application of online multitask learning based on least squares support vector regression in the financial market". Applied Soft Computing 121 (maj 2022): 108754. http://dx.doi.org/10.1016/j.asoc.2022.108754.
Pełny tekst źródłaLin, Zhaozhou, Qiao Zhang, Shengyun Dai i Xiaoyan Gao. "Discovering Temporal Patterns in Longitudinal Nontargeted Metabolomics Data via Group and Nuclear Norm Regularized Multivariate Regression". Metabolites 10, nr 1 (13.01.2020): 33. http://dx.doi.org/10.3390/metabo10010033.
Pełny tekst źródłaHong, Danfeng, Naoto Yokoya, Jocelyn Chanussot, Jian Xu i Xiao Xiang Zhu. "Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction". ISPRS Journal of Photogrammetry and Remote Sensing 158 (grudzień 2019): 35–49. http://dx.doi.org/10.1016/j.isprsjprs.2019.09.008.
Pełny tekst źródłaDaniels, John, Pau Herrero i Pantelis Georgiou. "A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems". Sensors 22, nr 2 (8.01.2022): 466. http://dx.doi.org/10.3390/s22020466.
Pełny tekst źródłaPrzybyła, Piotr, Austin J. Brockmeier i Sophia Ananiadou. "Quantifying risk factors in medical reports with a context-aware linear model". Journal of the American Medical Informatics Association 26, nr 6 (6.03.2019): 537–46. http://dx.doi.org/10.1093/jamia/ocz004.
Pełny tekst źródłaLucena, André, Joana Guedes, Mário Vaz, Luiz Silva, Denisse Bustos i Erivaldo Souza. "Modeling Energy Expenditure Estimation in Occupational Context by Actigraphy: A Multi Regression Mixed-Effects Model". International Journal of Environmental Research and Public Health 18, nr 19 (3.10.2021): 10419. http://dx.doi.org/10.3390/ijerph181910419.
Pełny tekst źródłaWang, Shaofeng, Shuang Liang, Qiao Chang, Li Zhang, Beiwen Gong, Yuxing Bai, Feifei Zuo, Yajie Wang, Xianju Xie i Yu Gu. "STSN-Net: Simultaneous Tooth Segmentation and Numbering Method in Crowded Environments with Deep Learning". Diagnostics 14, nr 5 (26.02.2024): 497. http://dx.doi.org/10.3390/diagnostics14050497.
Pełny tekst źródłaAlarfaj, Abeer Abdulaziz, i Hanan Ahmed Hosni Mahmoud. "Feature Fusion Deep Learning Model for Defects Prediction in Crystal Structures". Crystals 12, nr 9 (19.09.2022): 1324. http://dx.doi.org/10.3390/cryst12091324.
Pełny tekst źródłaKumaresan, M., M. Senthil Kumar i Nehal Muthukumar. "Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning". Mathematical Biosciences and Engineering 19, nr 10 (2022): 9983–10005. http://dx.doi.org/10.3934/mbe.2022466.
Pełny tekst źródłaZhao, Chengqian, Dengwang Li, Cheng Feng i Shuo Li. "OF-UMRN: Uncertainty-guided multitask regression network aided by optical flow for fully automated comprehensive analysis of carotid artery". Medical Image Analysis 70 (maj 2021): 101982. http://dx.doi.org/10.1016/j.media.2021.101982.
Pełny tekst źródłaLiu, Xiaoli, Peng Cao, Jinzhu Yang i Dazhe Zhao. "Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer’s Disease". Computational and Mathematical Methods in Medicine 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/7429782.
Pełny tekst źródłaLafond, Daniel, Benoît Roberge-Vallières, François Vachon i Sébastien Tremblay. "Judgment Analysis in a Dynamic Multitask Environment: Capturing Nonlinear Policies Using Decision Trees". Journal of Cognitive Engineering and Decision Making 11, nr 2 (9.08.2016): 122–35. http://dx.doi.org/10.1177/1555343416661889.
Pełny tekst źródłaZhang, Kun, Pengcheng Lin, Jing Pan, Peixia Xu, Xuechen Qiu, Danny Crookes, Liang Hua i Lin Wang. "End to End Multitask Joint Learning Model for Osteoporosis Classification in CT Images". Computational Intelligence and Neuroscience 2023 (16.03.2023): 1–18. http://dx.doi.org/10.1155/2023/3018320.
Pełny tekst źródłaWang, Hua, Feiping Nie, Heng Huang, Sungeun Kim, Kwangsik Nho, Shannon L. Risacher, Andrew J. Saykin i Li Shen. "Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort". Bioinformatics 28, nr 2 (6.12.2011): 229–37. http://dx.doi.org/10.1093/bioinformatics/btr649.
Pełny tekst źródłaMokhtaridoost, Milad, Philipp G. Maass i Mehmet Gönen. "Identifying Tissue- and Cohort-Specific RNA Regulatory Modules in Cancer Cells Using Multitask Learning". Cancers 14, nr 19 (9.10.2022): 4939. http://dx.doi.org/10.3390/cancers14194939.
Pełny tekst źródłaXie, Qian, Ning Jin i Shanshan Lu. "Lightweight Football Motion Recognition and Intensity Analysis Using Low-Cost Wearable Sensors". Applied Bionics and Biomechanics 2023 (12.07.2023): 1–10. http://dx.doi.org/10.1155/2023/2354728.
Pełny tekst źródłaMoon, Taewon, Woo-Joo Choi, Se-Hun Jang, Da-Seul Choi i Myung-Min Oh. "Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction". Horticulturae 8, nr 12 (29.11.2022): 1124. http://dx.doi.org/10.3390/horticulturae8121124.
Pełny tekst źródłaBae, Chul-Young, Bo-Seon Kim, Sun-Ha Jee, Jong-Hoon Lee i Ngoc-Dung Nguyen. "A Study on Survival Analysis Methods Using Neural Network to Prevent Cancers". Cancers 15, nr 19 (27.09.2023): 4757. http://dx.doi.org/10.3390/cancers15194757.
Pełny tekst źródłaXu, Hao, Panpan Zhu, Xiaobo Luo, Tianshou Xie i Liqiang Zhang. "Extracting Buildings from Remote Sensing Images Using a Multitask Encoder-Decoder Network with Boundary Refinement". Remote Sensing 14, nr 3 (25.01.2022): 564. http://dx.doi.org/10.3390/rs14030564.
Pełny tekst źródłaDu, Lei, Fang Liu, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin i Li Shen. "Identifying diagnosis-specific genotype–phenotype associations via joint multitask sparse canonical correlation analysis and classification". Bioinformatics 36, Supplement_1 (1.07.2020): i371—i379. http://dx.doi.org/10.1093/bioinformatics/btaa434.
Pełny tekst źródłaShin, Changho, Sunghwan Joo, Jaeryun Yim, Hyoseop Lee, Taesup Moon i Wonjong Rhee. "Subtask Gated Networks for Non-Intrusive Load Monitoring". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 1150–57. http://dx.doi.org/10.1609/aaai.v33i01.33011150.
Pełny tekst źródłaGui, Renzhou, Tongjie Chen i Han Nie. "Classification of Task-State fMRI Data Based on Circle-EMD and Machine Learning". Computational Intelligence and Neuroscience 2020 (1.08.2020): 1–10. http://dx.doi.org/10.1155/2020/7691294.
Pełny tekst źródłaZhan, Lili. "Classification Algorithm for Heterogeneous Network Data Streams Based on Big Data Active Learning". Journal of Applied Mathematics 2022 (21.10.2022): 1–10. http://dx.doi.org/10.1155/2022/2996725.
Pełny tekst źródłaWei, Xiaochen, Xiaolei Lv i Kaiyu Zhang. "Road Extraction in SAR Images Using Ordinal Regression and Road-Topology Loss". Remote Sensing 13, nr 11 (25.05.2021): 2080. http://dx.doi.org/10.3390/rs13112080.
Pełny tekst źródła