Gotowa bibliografia na temat „Multiphysical inversion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multiphysical inversion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multiphysical inversion"
Zheng, Yi-kang, Chong Wang, Hao-hong Liang, Yi-bo Wang i Rong-shu Zeng. "3D seismic forward modeling from the multiphysical inversion at the Ketzin CO2 storage site". Applied Geophysics 21, nr 3 (wrzesień 2024): 593–605. http://dx.doi.org/10.1007/s11770-024-1132-5.
Pełny tekst źródłaAl-Yasiri, Zainab Riyadh Shaker, Hayder Majid Mutashar, Klaus Gürlebeck i Tom Lahmer. "Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves". Infrastructures 7, nr 8 (12.08.2022): 104. http://dx.doi.org/10.3390/infrastructures7080104.
Pełny tekst źródłaColombo, Daniele, Diego Rovetta i Ersan Turkoglu. "CSEM-regularized seismic velocity inversion: A multiscale, hierarchical workflow for subsalt imaging". GEOPHYSICS 83, nr 5 (1.09.2018): B241—B252. http://dx.doi.org/10.1190/geo2017-0454.1.
Pełny tekst źródłaSun, Jiajia, Daniele Colombo, Yaoguo Li i Jeffrey Shragge. "Geophysics introduces new section on multiphysics and joint inversion". Leading Edge 39, nr 10 (październik 2020): 753–54. http://dx.doi.org/10.1190/tle39100753.1.
Pełny tekst źródłaGao, Guozhong, Aria Abubakar i Tarek M. Habashy. "Joint petrophysical inversion of electromagnetic and full-waveform seismic data". GEOPHYSICS 77, nr 3 (1.05.2012): WA3—WA18. http://dx.doi.org/10.1190/geo2011-0157.1.
Pełny tekst źródłaLouboutin, Mathias, Ziyi Yin, Rafael Orozco, Thomas J. Grady, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman i Felix J. Herrmann. "Learned multiphysics inversion with differentiable programming and machine learning". Leading Edge 42, nr 7 (lipiec 2023): 474–86. http://dx.doi.org/10.1190/tle42070474.1.
Pełny tekst źródłaTu, Xiaolei, i Michael S. Zhdanov. "Joint Gramian inversion of geophysical data with different resolution capabilities: case study in Yellowstone". Geophysical Journal International 226, nr 2 (5.04.2021): 1058–85. http://dx.doi.org/10.1093/gji/ggab131.
Pełny tekst źródłaColombo, Daniele, Diego Rovetta, Taqi Al-Yousuf, Ernesto Sandoval, Ersan Turkoglu i Gary McNeice. "Multiple joint wavefield inversions: Theory and field data implementations". Leading Edge 39, nr 6 (czerwiec 2020): 411–21. http://dx.doi.org/10.1190/tle39060411.1.
Pełny tekst źródłaZhdanov, Michael S., Michael Jorgensen i Leif Cox. "Advanced Methods of Joint Inversion of Multiphysics Data for Mineral Exploration". Geosciences 11, nr 6 (21.06.2021): 262. http://dx.doi.org/10.3390/geosciences11060262.
Pełny tekst źródłaWu, Pingping, Handong Tan, Changhong Lin, Miao Peng, Huan Ma i Zhengwen Yan. "Joint inversion of two-dimensional magnetotelluric and surface wave dispersion data with cross-gradient constraints". Geophysical Journal International 221, nr 2 (25.01.2020): 938–50. http://dx.doi.org/10.1093/gji/ggaa045.
Pełny tekst źródłaRozprawy doktorskie na temat "Multiphysical inversion"
Varignier, Geoffrey. "Construction de fonctions de sensibilité spatiales et prédictions rapides de diagraphies nucléaires en environnement de puits tubés". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY026.
Pełny tekst źródłaIn petroleum wells, many tools operating on different physical principles are commonly used for data acquisition. This thesis focuses on actives nuclear logging probes involving a neutron or a gamma source. They are used in the oil industry to characterize the well geology and have been initially developed to realize quantitative measurements in open hole conditions where the probe is directly in contact with the rock formation. Once the petroleum well is drilled, a steel casing is installed and cemented, the probes are then no longer in contact with the rock formation and the measurements are considered qualitative due to the complexity of the geometry and the signal attenuation.With the hydrocarbon resources rarefaction, the number of explorations projects decease each year. Petroleum companies have more and more mature wells whose production capacities must be maintained and others at the end of their life which must be abandoned. Those phases require systematically logging measurements. The quantity of logs in cased-hole configuration tends to increase a lot and it becomes necessary to improve their interpretation.The industrial problematic is to characterize quantitatively, in a filed with strong radial heterogeneity, all the components the well (e.g. the fluids, the casing, the cement) and not just the rock reservoir parameters. The approach developed in the thesis is based on the concept of sensitivity function of nuclear logging probes, which represents the 3D dependency of the measurement to the model elements and are obtained by Monte-Carlo simulation. Due to the large number of unknowns, a multiphysical inversion considering the all the measurements of the different nuclear probes (porosity by neutron diffusion, density by gamma diffusion, lithology by neutron-gamma activation) is essential.The first part of the thesis allowed to compare the Monte-Carlo particles transport codes GEANT4 and MCNP for Geosciences applications. Results show a very good agreement for the gamma-gamma physics and a good agreement for the neutron-neutron physics but significant discrepancies for the neutron-gamma physics where MCNP seems to be more relevant.The second part of the thesis allowed to experimental validate Monte-Carlo simulations and to design a sensitivity function computation method specific for the cased-hole configuration. The validation is a comparison between the experimental sensitivity functions measured in calibration center and the numerical sensitivity functions computed using two different methods, the first one based on spatial importances estimated with MCNP and the second one based on interaction locations obtained with GEANT4. The results show good experimental agreement between the measured and calculated radial and axial sensitivity profiles, which validates the concept of sensitivity function with a preference for the interaction locations method which presents greater radial contrast between the different components of the well.The third part of the thesis consisted of making the geological interpretation of a reservoir zone of a cased hole well with sensitivity functions. The neutron-gamma and porosity logs predicted using the sensitivity functions are compared to the measured logs. An optimal earth model is obtained by iteration, showing a good capacity of the fast forward modeling algorithums to quantitatively reproduce the logs in cased-hole configuration providing that a relevant calibration is apply
Książki na temat "Multiphysical inversion"
Zhdanov, Michael S. Advanced Methods of Joint Inversion and Fusion of Multiphysics Data. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3.
Pełny tekst źródłaZhdanov, Michael. Advanced Methods of Joint Inversion and Fusion of Multiphysics Data. Springer, 2023.
Znajdź pełny tekst źródłaCzęści książek na temat "Multiphysical inversion"
Zhdanov, Michael S. "Joint Focusing Inversion of Multiphysics Data". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 193–213. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_10.
Pełny tekst źródłaZhdanov, Michael S. "Machine Learning Inversion of Multiphysics Data". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 305–15. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_16.
Pełny tekst źródłaZhdanov, Michael S. "Introduction to Inversion Theory". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 3–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_1.
Pełny tekst źródłaZhdanov, Michael S. "Joint Minimum Entropy Inversion". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 215–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_11.
Pełny tekst źródłaZhdanov, Michael S. "Probabilistic Approach to Gramian Inversion". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 245–58. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_13.
Pełny tekst źródłaZhdanov, Michael S. "Joint Inversion Based on Structural Similarities". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 177–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_9.
Pełny tekst źródłaZhdanov, Michael S. "Gradient-Type Methods of Nonlinear Inversion". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 129–59. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_7.
Pełny tekst źródłaZhdanov, Michael S. "Gramian Method of Generalized Joint Inversion". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 225–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_12.
Pełny tekst źródłaZhdanov, Michael S. "Simultaneous Processing and Fusion of Multiphysics Data and Images". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 259–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_14.
Pełny tekst źródłaZhdanov, Michael. "Modeling and Inversion of Potential Field Data". W Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 319–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_17.
Pełny tekst źródłaStreszczenia konferencji na temat "Multiphysical inversion"
Feng, Shihang, Peng Jin, Xitong Zhang, Yinpeng Chen, David Alumbaugh, Michael Commer i Youzuo Lin. "Extremely weak supervision inversion of multiphysical properties". W Second International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2022. http://dx.doi.org/10.1190/image2022-3746487.1.
Pełny tekst źródłaHallinan, Stephen, Wolfgang Soyer, Randall Mackie, Carsten Scholl i Federico Miorelli. "Geologically Consistent Multiphysics Inversion". W International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-21936-ea.
Pełny tekst źródłaHu, Yanyan, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Jiefu Chen, Jiuping Chen i Yueqing Huang. "Deep learning-enhanced multiphysics joint inversion". W First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3583667.1.
Pełny tekst źródłaMolodtsov, Dmitry, i Vladimir Troyan. "Multiphysics joint inversion through joint sparsity regularization". W SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/segam2017-17792589.1.
Pełny tekst źródłaHu, Yanyan, Jiefu Chen, Xuqing Wu i Yueqin Huang. "Multiphysics Joint Inversion Using Successive Deep Perceptual Constraints". W 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9887246.
Pełny tekst źródłaCeci, F., i A. Battaglini. "Reducing geothermal exploration uncertainty via multiphysics joint inversion". W 2nd Geoscience & Engineering in Energy Transition Conference. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202121025.
Pełny tekst źródłaShahin, A., M. Myers i L. Hathon. "Deciphering Dual Porosity Carbonates Using Multiphysics Modeling and Inversion". W Third EAGE WIPIC Workshop: Reservoir Management in Carbonates. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903112.
Pełny tekst źródłaHu, Yanyan, Jiefu Chen, Xuqing Wu i Yueqin Huang. "Deep Learning Enhanced Joint Inversion of Multiphysics Data with Nonconforming Discretization". W 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9703802.
Pełny tekst źródłaChikhaoui, Zeineb, Julien Gomand, François Malburet i Pierre-Jean Barre. "Complementary Use of BG and EMR Formalisms for Multiphysics Systems Analysis and Control". W ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82318.
Pełny tekst źródłaDomenzain, Diego, John Bradford i Jodi Mead. "Multiphysics joint inversion of field FWI-GPR and ER surface acquired data". W First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3576479.1.
Pełny tekst źródła