Gotowa bibliografia na temat „Multifunctional Textiles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multifunctional Textiles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multifunctional Textiles"
Chen, Guopu, Jie Hu, Zhiwu Hong, Gefei Wang, Zhiming Wang, Canwen Chen, Jinjian Huang, Xiuwen Wu i Jianan Ren. "Multifunctional Electrospun Textiles for Wound Healing". Journal of Biomedical Nanotechnology 18, nr 3 (1.03.2022): 796–806. http://dx.doi.org/10.1166/jbn.2022.3288.
Pełny tekst źródłaWei, Xiao, Xiaotong Liang, Chongguang Meng, Shuze Cao, Qiongfeng Shi i Jun Wu. "Multimodal electronic textiles for intelligent human-machine interfaces". Soft Science 3, nr 2 (2023): 17. http://dx.doi.org/10.20517/ss.2023.09.
Pełny tekst źródłaVisileanu, Emilia, Alexandra Ene, Carmen Mihai i Marek Kowalczuk. "Polymers for Multifunctional Textiles". Macromolecular Symposia 242, nr 1 (październik 2006): 295–306. http://dx.doi.org/10.1002/masy.200651041.
Pełny tekst źródłaVashist, Paribha, Santanu Basak i Wazed Ali. "Bark Extracts as Multifunctional Finishing Agents for Technical Textiles: A Scientific Review". AATCC Journal of Research 8, nr 2 (1.03.2021): 26–37. http://dx.doi.org/10.14504/ajr.8.2.4.
Pełny tekst źródłaGowri, Sorna, Mohammad Akram Khan i Avanish Kumar Srivastava. "Textile Finishing Using Polymer Nanocomposites for Radiation Shielding, Flame Retardancy and Mechanical Strength". Textile & Leather Review 4, nr 3 (7.09.2021): 160–80. http://dx.doi.org/10.31881/tlr.2021.07.
Pełny tekst źródłaKan, Chi-Wai, i Yin-Ling Lam. "Future Trend in Wearable Electronics in the Textile Industry". Applied Sciences 11, nr 9 (26.04.2021): 3914. http://dx.doi.org/10.3390/app11093914.
Pełny tekst źródłaLupino, Jo�o Henrique Barcha, Gustavo Pereira Saito, Marco Aur�lio Cebim i Marian Rosaly Davolos. "UV-protective compound-containing smart textiles: A brief overview". Ecl�tica Qu�mica Journal 48, nr 1 (1.01.2023): 16–40. http://dx.doi.org/10.26850/1678-4618eqj.v48.1.2023.p16-40.
Pełny tekst źródłaAfroj, Shaila, Mohammad Hamidul Islam i Nazmul Karim. "Multifunctional Graphene-Based Wearable E-Textiles". Proceedings 68, nr 1 (15.01.2021): 11. http://dx.doi.org/10.3390/proceedings2021068011.
Pełny tekst źródłaSalam, Abdul, Duy-Nam Phan, Saif Ullah Khan, Syed Zameer Ul Hassan, Tufail Hassan, Raja Muhammad Waseem Ullah Khan, Khalid Pasha, Muhammad Qamar Khan i Ick Soo Kim. "Development of a Multifunctional Intelligent Elbow Brace (MIEB) Using a Knitted Textile Strain Sensor". Fibres and Textiles in Eastern Europe 30, nr 1(151) (28.02.2022): 22–30. http://dx.doi.org/10.5604/01.3001.0015.6457.
Pełny tekst źródłaGlažar, Dominika, Ivan Jerman, Brigita Tomšič, Raghuraj Singh Chouhan i Barbara Simončič. "Emerging and Promising Multifunctional Nanomaterial for Textile Application Based on Graphitic Carbon Nitride Heterostructure Nanocomposites". Nanomaterials 13, nr 3 (19.01.2023): 408. http://dx.doi.org/10.3390/nano13030408.
Pełny tekst źródłaRozprawy doktorskie na temat "Multifunctional Textiles"
Berglin, Lena. "Interactive Textile Structures : Creating Multifunctional Textiles based on Smart Materials". Doctoral thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3490.
Pełny tekst źródłaMotay, Marvin. "Multifunctional photocatalytic substrates and textiles constructed via Layer-by-Layer self-assembly of Ag and TiO2 nanoparticles". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF030/document.
Pełny tekst źródłaTiO2 and Ag nanoparticle multilayered films were constructed on model substrates and textiles via Layer-by-Layer (LbL) assembly. The TiO2 nanoparticle based films constructed on model substrates showed a non-conventional photocatalytic behaviour for gas phase formic acid mineralisation upon UV-A irradiation, and a high mineralisation was obtained for a single layer TiO2 nanoparticle film. These films also showed biocidal properties upon UV-A irradiation. The elaboration of a one-pot method, combining the photo-induced synthesis of Ag nanoparticles and the LbL deposition of TiO2 nanoparticle layer, allowed the direct synthesis of Ag nanoparticles within the films and a high enhancement of the film photocatalytic properties. The construction methods were successfully transfered on textile surfaces. The films were photocatalytically active and biocidal under UV-A irradiation after several washing treatment cycles
Mandlekar, Neeraj Kumar. "Integration of wood waste to develop multifunctional fully biobased textile structure". Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I062/document.
Pełny tekst źródłaIt has been chosen to study valorization of low-cost industrial lignin as additive in designing the flame retardant (FR) system for polyamide 11 (PA) to develop biobased textile structure. The main focus of this thesis work is to consider lignin as carbon source and introduce in a textile structure in combination with phosphinate salt (FR agent). In the primary study, chemically different industrial lignins were incorporated in PA by extrusion to investigate the charring and fire retardant behaviour of the prepared binary blends. In addition, the introduction of sulphonated lignins significantly reduced the peak of the heat release rate (PHRR) and of the total heat release (THR), and a noticeable increase of the char residue was observed after forced combustion test. In the next approach, lignin was exploited as carbon source in combination with commercially available phosphinate FR (i.e., ZnP and AlP). To achieve this objective, a preliminary study carried out with laboratory grade lignin (LS) combined with ZnP to investigate the thermal stability and fire performance as well as the possible synergy between lignin and ZnP and with the polymer matrix. The results obtained in this study permitted to continue further, the practical implementation of lignin and multifilament production. In the next step, flame retarded blends were developed with direct addition of low-cost industrial lignins (LL and DL) with phosphinate FR. For the systematic understanding, various FR formulations were developed by varying the lignin and FR loading and characterized. Thermal decomposition analysis showed that the presence of lignin decreases the initial decomposition temperature (T5%) due to the decomposition of lignin which starts at a lower temperature region with the evolution of less thermally stable compounds and the maximum decomposition temperature (Tmax) shifts to higher temperature region, at this stage the formation of phenolic, carbonyls, hydrocarbons and CO2 along with phosphinate compounds occurs. Meanwhile, in the condensed phase thermally stable aromatic charred layer is formed because of lignin decomposition and phosphate compounds formation due to the presence of phosphinate metal salt. A higher amount of char residue is obtained when LL combined with ZnP/AlP as compared to the DL and ZnP/AlP blends. It is assumed that, during decomposition of LL, the sulfonate compounds release SO2 and transformed into thermally stable Na2SO4, hence giving rise to the stable char residue. The fire properties were assessed by cone calorimeter tests revealed the combination of lignin and phosphinate FR significantly reduced the PHRR and other fire-related parameters due to the formation of a protective char layer. The presence of lignin not only improve fire retardancy but also reduced the evolution of carbon monoxide (CO). More enhanced fire retardant properties were obtained with LL and ZnP/AlP combination reaches to 10 wt% in ternary blends, which not only promotes char formation but also confer the stability to char in the condensed phase. Furthermore, the most enhanced forced combustion results were obtained with LL and AlP (in particular, PA80-LL10-AlP10). Multifilament yarns were successfully produced for PA-DL-ZnP and PA-LL-ZnP combinations. However, the blends of AlP with lignin were not spinnable because of low compatibility and dispersion level of AlP in the polymer. Optical microscopy and tensile tests were performed to study the physical properties of multifilaments. A double layer (interlock structure) knitted fabrics were developed to evaluate fire behaviour analysis on fabric samples
Agnhage, Tove. "Eco-designed functionalization of polyester fabric". Doctoral thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12408.
Pełny tekst źródłaLe secteur de la teinture et de l’ennoblissement textile est de plus en plus conscient de son impact sur l’environnement dû principalement à la consommation élevée de l’eau et à sa pollution, et aux pertes d’énergie. Pour réduire ces impacts, les chercheurs proposent l’utilisation de molécules issues de ressources naturelles, pour traiter les textiles en limitant les impacts sur l’environnement. C’est le cas pour l’obtention de textiles colorés ou pour l’attribution de toute autre fonctionnalité. Cependant, il n’est pas évident que ces molécules bio-sourcées n’aient aucun impact sur l’environnement. On comprend l’importance d’évaluer les impacts de leur utilisation et d’améliorer leur profil environnemental. Or ce type d’étude est peu présent dans la littérature. La recherche présentée dans cette thèse comporte l’évaluation des impacts environnementaux en utilisant l’outil d’analyse du cycle de vie (ACV) pour la conception du traitement d’un tissu de polyester (PET) multifonctionnel avec des anthraquinones naturelles. La méthodologie d’éco conception que nous avons appliquée ouvre la voie à une bio-fonctionnalisation des textiles plus respectueuse de l’environnement. Les anthraquinones ont été obtenues par extraction des racines de plantes de garance et constituent le colorant appelé garance. Les trois questions principales abordées lors de ce travail de recherche sont formulées autour de l’utilisation de la garance : (I) Peut-on traiter les tissus de PET avec de la garance pour obtenir des propriétés multifonctionnelles ? (II) Quel est le profil environnemental du procédé de teinture du PET par la garance et comment l’améliorer ? (III) Quels sont les principaux challenges pour l’utilisation de l’ACV dans l’évaluation environnementale du traitement des textiles par des colorants naturels? Nous avons montré que la garance peut être utilisée pour conférer des propriétés multifonctionnelles au PET. Ensuite, nous avons pu orienter notre étude pour améliorer la durabilité des traitements par les procédés de fonctionnalisation à la fois par épuisement ou par foulardage. En s’appuyant sur l’ACV, l’optimisation de la teinture que nous avons réalisée réduit tous les impacts sur l’environnement. Cette étude nous permet d’identifier les challenges qui doivent être surmontés pour que l’ACV puisse contribuer à l’utilisation de bio-molécules pour la teinture des textiles dans le respect des principes de développement durable. Ils concernent le manque de données pour ces travaux de recherche et leur nature interdisciplinaire. Ainsi, en résolvant ces questions, on peut envisager aboutir à une bio- fonctionnalisation des textiles respectueuse de l’environnement.
Den höga miljöpåverkan från textilfärgning och efterbehandling, på grund av hög vattenförbrukning, dess förorening, och ineffektiv användning av energi, är idag välkänt. För att minska miljöpåverkan föreslår forskningsvärlden användning av färgämnen från naturliga resurser. Syftet med att använda dessa är att ge nya attribut till textilier utan att göra avkall på miljömässig hållbarhet. Attribut som ges kan vara färg och/eller andra egenskaper. En nackdel är dock att användningen av bio-baserade färgämnen är inte fri från att belasta miljön. Det blir därför av största betydelse att bedöma denna miljöpåverkan och förbättra miljöprofilen. Sådana studier är dock i allmänhet sällsynta. Studien som presenteras i denna avhandling har inkluderat miljöpåverkans- bedömning, med hjälp av livscykelanalys (LCA), i designprocessen av en multifunktionell polyester (PET) väv via naturliga antrakinoner. Genom att göra så har ett eko-design tillvägagångssätt använts, med avsikt att bana väg för miljömässigt hållbar bio-funktionalisering av textil. Antrakinonerna erhölls från rot extrakt av växten krapp (Rubia tinctorum L.), och hänvisas till som krapp färgämne. Frågeställningar var därför formulerade relaterat till användningen av krapp färgämne. Tre forskningsfrågor har besvarats: (I) Kan krapp färgämne verka multifunktionellt på en PET väv? (II) Hur ser miljöprofilen ut, från färgningsprocessen av PET med krapp färgämne, och hur kan den förbättras? (III) Vilka är de största utmaningarna med att använda LCA för att bedöma miljökonsekvenserna av textilfärgning med växtbaserade färgämnen? Det kan konkluderas att det finns potential för krapp färgämne att verka multifunktionellt på PET. Baserat på uppmuntrande resultat är en rekommendation för det framtida arbetet att fokusera på kvalitén hos de attribut som presenterats och deras förbättringspotential, både i färgning via färgbad och via foulard. LCA driven processoptimering av textilfärgningen förbättrade i varje miljöpåverkans- kategori som studerats. Emellertid har flera utmaningar identifierats som måste övervinnas för att LCA skall kunna bidra till en hållbar användning av multifunktionella växtbaserade färgämnen för textil. De största utmaningarna är bristen på tillgängliga data i forskningsstadiet och den tvärvetenskapliga forskningsarenan. Det är tänkt att om dessa utmaningar bemästras kan LCA bidra till en hållbar bio-funktionalisering av textil.
Disputationen kan följas via länk i sal U401b, Textilhögskolan, Högskolan i Borås
Erasmus Mundus Joint Doctorate program: Sustainable Management and Design for Textiles
Halavska, Liudmyla, i Oleksandra Batrak. "The study of consumer properties of dual-layer weft knitted fabric using eco-raw materials". Thesis, Technical University of Liberec, 2017. https://er.knutd.edu.ua/handle/123456789/8910.
Pełny tekst źródłaВ сучасному світі все більше людей приділяють увагу різноманітним аспектам, що можуть зберегти та покращити їхнє здоров’я та рівень життя. Тому в наш час знову підвищився інтерес до розширення асортименту екологічного трикотажу функціонального призначення, виготовленого з використанням натуральних видів сировини. Розроблено структуру й запропоновані заправні дані для вироблення інтегрованого трикотажного полотна, яке завдяки використанню для формування одного з шарів двошарового трикотажу конопляної чи кропив'яної пряжі може бути використане у якості функціонального текстильного матеріалу для виготовлення білизняних виробів лікувально-профілактичної дії, зокрема для натільної білизни поранених військовослужбовців у період їх лікування та реабілітації. Розроблена структура являє собою двошарове полотно з пресовим з'єднанням шарів основними нитками. У полотні з'єднувальні пресові накиди розташовані у шаховому порядку. В місцях формування з'єднувальних накидів утворюються ненаскрізні отвори, що забезпечують вентиляцію та швидке виведення пароподібної вологи з під одягового простору. У ході досліджень визначено характер впливу виду еко-сировини одного з шарів інтегрованого двошарового трикотажу на зміну лінійних розмірів трикотажу, релаксаційні характеристики, рівень капілярності та зміну рівня підняття рідини в часі його функціональних шарів.
ZAHID, MUHAMMAD. "Multifunctional and Responsive Textile Nanocomposites for High Value Applications". Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929958.
Pełny tekst źródłaJonsson, Marcus. "Design of Multifunctional and Sustainable Backpacks : Combining Skiing, Snowboarding, and Urban Usage". Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69707.
Pełny tekst źródłaHaentzsche, Eric, Moritz Frauendorf, Chokri Cherif, Andreas Nocke, Michaela Reichardt, Marko Butler i Viktor Mechtcherine. "Multifunctional components from carbon concrete composite C³ – integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopes". Sage, 2018. https://tud.qucosa.de/id/qucosa%3A35422.
Pełny tekst źródłaSankaran, Vignaesh, Tristan Ruder, Steffen Rittner, Evelin Hufnagl i Chokri Cherif. "A multiaxial warp knitting based yarn path manipulation technology for the production of bionic-inspired multifunctional textile reinforcements in lightweight composites". Sage, 2016. https://tud.qucosa.de/id/qucosa%3A35615.
Pełny tekst źródłaDostál, Jan. "Polyfunkční dům ve Velkých Opatovicích". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265634.
Pełny tekst źródłaKsiążki na temat "Multifunctional Textiles"
Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-02500-9.
Pełny tekst źródłaNguyen, Tuan Anh, Andrea Ehrmann i Phuong Nguyen Tri. Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier, 2020.
Znajdź pełny tekst źródłaTri, Phuong Nguyen, Tuán Anh Nguyen i Andrea Ehrman. Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier, 2020.
Znajdź pełny tekst źródłaMultifunctional Polymer Nanocomposites. CRC Press, 2010.
Znajdź pełny tekst źródłaLeng, Jinsong, i Alan Kin-tak Lau. Multifunctional Polymer Nanocomposites. Taylor & Francis Group, 2010.
Znajdź pełny tekst źródłaLeng, Jinsong, i Alan Kin-tak Lau. Multifunctional Polymer Nanocomposites. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaLeng, Jinsong, i Alan Kin-tak Lau. Multifunctional Polymer Nanocomposites. Taylor & Francis Group, 2010.
Znajdź pełny tekst źródłaDuquesne, Sophie, Carole Magniez i Giovanni Camino. Multifunctional Barriers for Flexible Structure: Textile, Leather and Paper. Springer London, Limited, 2007.
Znajdź pełny tekst źródłaMultifunctional barriers for flexible structure: Textile, leather and paper. Germany [1990-onward]: Springer Verlag, 2007.
Znajdź pełny tekst źródłaDuquesne, Sophie, Carole Magniez i Giovanni Camino. Multifunctional Barriers for Flexible Structure: Textile, Leather and Paper. Springer Berlin / Heidelberg, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Multifunctional Textiles"
Shabbir, Mohd, S. Wazed Ali i Faqeer Mohammad. "Eco-Fabrication of Nanomaterials for Multifunctional Textiles". W Handbook of Ecomaterials, 1–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_56-1.
Pełny tekst źródłaShabbir, Mohd, S. Wazed Ali i Faqeer Mohammad. "Eco-fabrication of Nanomaterials for Multifunctional Textiles". W Handbook of Ecomaterials, 1483–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_56.
Pełny tekst źródłaZangani, Donato. "Multifunctional Textiles for Protection against Natural Hazards". W Emboding Intelligence in Structures and Integrated Systems, 601–8. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-13-3.601.
Pełny tekst źródłaWankhade, Prachity, Neha Mehra i Vijay Gotmare. "Development of Ecofriendly Multifunctional Textiles Using Peppermint Oil". W Functional Textiles and Clothing 2020, 149–58. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9376-5_11.
Pełny tekst źródłaMishra, Kundlata, i Ela Dedhia. "Application of Protective Finishes on Denim and Analysis of Its Multifunctional Performances". W Functional Textiles and Clothing 2020, 129–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9376-5_10.
Pełny tekst źródłaKroll, Lothar. "Textile- and plastic-based technologies". W Multifunctional Lightweight Structures, 295–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-62217-9_5.
Pełny tekst źródłaDemir, Didem, Ashok Vaseashta i Nimet Bölgen. "Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection". W NATO Science for Peace and Security Series B: Physics and Biophysics, 275–89. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_22.
Pełny tekst źródłaChowdhury, K. P. "Nanomaterials for Multifunctional Textiles". W Emerging Applications of Nanomaterials, 169–217. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902288-8.
Pełny tekst źródłaLeal-Junior, Arnaldo, i Anselmo Frizera-Neto. "Wearable multifunctional smart textiles". W Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics, 223–43. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-32-385952-3.00021-4.
Pełny tekst źródłaKizildag, Nuray. "Smart textiles with PCMs for thermoregulation". W Multifunctional Phase Change Materials, 445–505. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-85719-2.00013-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Multifunctional Textiles"
Dubova, Ilze, Agnija Apine, Dace Grauda, Dalius Butkauskas, Inga Lashenko i Līga Jankevica. "Adaptation of methods for the determination of biodegradation of bio-textiles with amber particles". W 79th International Scientific Conference of the University of Latvia. University of Latvia, 2022. http://dx.doi.org/10.22364/iarb.2021.07.
Pełny tekst źródłaAntunes, Joana C., Tânia Ferreira, Luisa M. Arruda, Maria Sousa-Silva, Fernanda Gomes, Fernando Cunha, Inês P. Moreira, Mariana Henriques i Raúl Fangueiro. "Multifunctional Coated Textiles for Active Biological Protection". W MATERIAIS. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/materproc2022008143.
Pełny tekst źródłaAileni, Raluca M., Lilioara Surdu i Lutfi Oksuz. "Human health impact of multifunctional textiles obtained by using plasma technology". W 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179794.
Pełny tekst źródłaSarbu, Teodor. "Smart Textiles Based on Conductive Woven Structures". W The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.i.7.
Pełny tekst źródłaNguyen, Tuan-Anh. "Multifunctional Smart Textiles: Influences of Hydrophobic Additional Finishes on Antimicrobial Treated Cotton Fabric". W 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2018. http://dx.doi.org/10.1109/gtsd.2018.8595621.
Pełny tekst źródłaGabriela Ene, Alexandra, Lucia Secareanu, Ovidiu Iordache, Mirela Blaga i Cristina Lite. "Characterization Studies of A Commercial Blue Clay For Cosmetic Textiles With Antibacterial Activity". W 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003642.
Pełny tekst źródłaM. Conti, G., i R. Gaddi. "Design through the layers: Smart textiles for contemporary design solutions and sustainable consumption processes". W Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe100952.
Pełny tekst źródłaCupal, M., J. Dřínovský, T. Götthans, J. Láčík, J. Prášek, Z. Raida, D. Kráčalová i in. "Textile-Integrated Transmitting Unit". W I European Conference On Multifunctional Structures. CIMNE, 2020. http://dx.doi.org/10.23967/emus.2019.007.
Pełny tekst źródłaGibson, Phillip, i Heidi Schreuder-Gibson. "Production and Characterization of Nanoporous Polymer Membranes Produced by an Electrospraying Process". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1949.
Pełny tekst źródłaTian, Bin, i Wei Wu. "Printed Stretchable Multifunctional E-textile for Wearable electronics". W 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021. http://dx.doi.org/10.1109/edtm50988.2021.9420864.
Pełny tekst źródła