Gotowa bibliografia na temat „Multifunctional Composite Nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multifunctional Composite Nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multifunctional Composite Nanomaterials"
Liu, Jialin, David Hui i Denvid Lau. "Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications". Nanotechnology Reviews 11, nr 1 (1.01.2022): 770–92. http://dx.doi.org/10.1515/ntrev-2022-0041.
Pełny tekst źródłaDanilenko, I., O. Gorban, A. Shylo, L. Akhkozov, M. Lakusta i T. Konstantinova. "New multifunctional zirconia composite nanomaterials – from electronics to ceramics". IOP Conference Series: Materials Science and Engineering 213 (czerwiec 2017): 012016. http://dx.doi.org/10.1088/1757-899x/213/1/012016.
Pełny tekst źródłaTran, Thien, Daniel M. Deocampo i Nadine Kabengi. "Synthesis and Optimization of Multiwalled Carbon Nanotubes–Ferrihydrite Hybrid Composite". Journal of Composites Science 5, nr 1 (26.12.2020): 5. http://dx.doi.org/10.3390/jcs5010005.
Pełny tekst źródłaAli, Alamry, i Andri Andriyana. "Properties of multifunctional composite materials based on nanomaterials: a review". RSC Advances 10, nr 28 (2020): 16390–403. http://dx.doi.org/10.1039/c9ra10594h.
Pełny tekst źródłaChan, Ming-Hsien, Wen-Tse Huang, Aishwarya Satpathy, Ting-Yi Su, Michael Hsiao i Ru-Shi Liu. "Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics". Pharmaceutics 14, nr 2 (21.02.2022): 456. http://dx.doi.org/10.3390/pharmaceutics14020456.
Pełny tekst źródłaTomšič, Brigita, Špela Bajrič, Kaja Cergonja, Gracija Čepič, Ana Gerl, Egshig Ladislav Varga, Marina Panoska i in. "Tailoring of multifunctional cotton fabric by embedding a TiO2+ZnO composite into a chitosan matrix". Tekstilec 66 (7.07.2023): 1–14. http://dx.doi.org/10.14502/tekstilec.66.2023049.
Pełny tekst źródłaHu, Yu, Nan Yao, Jin Tan i Yang Liu. "An Efficient and Reusable Multifunctional Composite Magnetic Nanocatalyst for Knoevenagel Condensation". Synlett 30, nr 06 (6.03.2019): 699–702. http://dx.doi.org/10.1055/s-0037-1612076.
Pełny tekst źródłaShen, Jia-Yan, Ting Dong, Liang Fang, Jian-Jun Ma i Li-Hong Zeng. "Study on Multifunctional Composite Nanomaterials for Controlled Drug Release in Biomedicine". Journal of Nanoscience and Nanotechnology 21, nr 2 (1.02.2021): 1230–35. http://dx.doi.org/10.1166/jnn.2021.18685.
Pełny tekst źródłaMonteserín, Cristina, Miren Blanco, Nieves Murillo, Ana Pérez-Márquez, Jon Maudes, Jorge Gayoso, Jose Manuel Laza, Estíbaliz Hernáez, Estíbaliz Aranzabe i Jose Luis Vilas. "Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO2 Nanoparticles Modified Electrospun Nanofibre Veils". Polymers 11, nr 9 (19.09.2019): 1524. http://dx.doi.org/10.3390/polym11091524.
Pełny tekst źródłaChan, Ming-Hsien, Chien-Hsiu Li, Yu-Chan Chang i Michael Hsiao. "Iron-Based Ceramic Composite Nanomaterials for Magnetic Fluid Hyperthermia and Drug Delivery". Pharmaceutics 14, nr 12 (24.11.2022): 2584. http://dx.doi.org/10.3390/pharmaceutics14122584.
Pełny tekst źródłaRozprawy doktorskie na temat "Multifunctional Composite Nanomaterials"
Carraro, Giorgio. "Is Rust a Real Must? From Design to Applications of Multifunctional Fe2O3-based Nanomaterials". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423463.
Pełny tekst źródłaLa presente tesi di dottorato ha riguardato la progettazione e fabbricazione di nanomateriali multi-funzionali a base di Fe2O3 utilizzando tecniche da fase vapore, quali chemical vapor deposition, sia termica(CVD) che plasma assistita (PECVD), atomic layer deposition (ALD) e sputtering, sia come tali che combinate in originali strategie sintetiche ibride. Le attività di ricerca hanno coperto l'intera catena di produzione, partendo dalla sintesi del precursore molecolare, allo sviluppo e caratterizzazione chimico-fisica dei materiali fino al loro uso in applicazioni funzionali nel campo dell'energia e della salvaguardia ambientale. In particolare, l'attenzione ha inizialmente riguardato la sintesi e caratterizzazione di un nuovo precursore di Fe(II) [Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-esauoro-2,4- pentandionato; TMEDA = N,N,N',N'- tetrametiletilenediammina)], il quale possiede proprietà migliorate rispetto ai composti _nora utilizzati per applicazioni CVD. L'uso di questo complesso in esperimenti di CVD termico ha permesso non solo l'ottenimento della fase termodinamicamente più stabile e utilizzata α-Fe2O3, ma delle più rare e scarsamente studiate β- e ε-Fe2O3, che sono state selettivamente sintetizzate in forma pura e con nano-organizzazione controllata. Inoltre, Fe(hfa)2TMEDA _e stato usato anche in esperimenti PECVD come sorgente sia per Fe che per F, sfruttando la peculiare reattivit_a di plasmi freddi di non equilibrio per l'ottenimento di nanosistemi a base di α- e di β-Fe2O3 drogati con uoro. Sulla base degli sforzi dedicati alla sintesi di nanomateriali single-phase con migliorate proprietà funzionali, la fabbricazione di nanocompositi metallo/ossido (M/Fe2O3, con M = Pt, Ag, Au) e ossido/ossido (CuO/Fe2O3, Fe3-xTixO4/Fe2O3) è stata infine realizzata attraverso la combinazione di processi CVD con sputtering o ALD. Lo studio delle correlazioni fra le condizioni di processo, le caratteristiche chimico- fisiche dei nanosistemi e le loro prestazioni funzionali è stato un aspetto cruciale dell'intera ricerca nel corso del progetto di Dottorato. A tal riguardo, la caratterizzazione di composizione, morfologia, micro- e nano-struttura e proprietà ottiche dei materiali, è stata eseguita con l'utilizzo di svariate tecniche analitiche complementari tra di loro. Inoltre, le proprietà funzionali dei nanosistemi sintetizzati sono state indagate in vista del loro possibile utilizzo tecnologico in vari settori [magnetismo, batterie al litio, sensori di gas tossici/infiammabili e applicazioni foto-assistite (idrofilicità foto-indotta, degradazione fotocatalitica di inquinanti, produzione di H2 per via fotocatalitica e fotoelettrochimica)]. I risultati ottenuti in questa tesi dimostrano come la preparazione di sistemi a base di ossido di ferro(III), sia puri che multicomponente, con, composizione di fase (α- or β- or ε-Fe2O3) e nano-organizzazione controllata, come la fabbricazione di nanomateriali multi-componenti a base di ossidi di Fe(III), rappresenta una risposta efficace ai problemi aperti in vari campi tecnologici. In particolare, le strategie da fase vapore adottate aprono interessanti prospettive per una futura scalabilità industriale e commercializzazione dei materiali studiati, un punto chiave per il loro sfruttamento in dispositivi avanzati.
Lee, Jeonyoon. "Nanomaterial-enabled manufacturing for next-generation multifunctional advanced composite prepreg laminate architectures". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120256.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 179-193).
Manufacturing of advanced aerospace-grade structural composites has traditionally utilized autoclaves to impart heat and pressure, in addition to vacuum, to create high-quality, void (defect)- free, reproducible structures. Carbon (micro) fiber reinforced polymer (CFRP) composites, which are pre-impregnated with a thermoset or thermoplastic polymer to form prepreg sheets, are in widespread use via autoclave processing due to their ease of use and high fiber volume fraction. However, autoclaves have high capital costs, and incur high operating costs due to the convective heating and applied pressure. Furthermore, the fixed capacity of an autoclave limits the size and design of composite parts, and the production rate is limited by autoclave availability. As a result, there has been an increasing interest in the development of alternatives, for example, out-of-autoclave (OoA) specially-formulated prepregs that only require heat and vacuum (i.e., pressure is not required). OoA prepreg processing also has drawbacks due to their specialized morphological and chemical formulation for vacuum-only conditions, as well as part quality (especially, composite interlaminar properties) that is below autoclave-processed materials. In light of the limitations described above, this dissertation (1) develops a novel prepreg processing technique, termed 'out-of- oven' (OoO) curing, that conductively cures OoA prepregs via nanoengineered resistive heating; (2) expands the applicability of the OoO process to conventional autoclave-formulated prepregs; and (3) introduces multifunctionality in the form of cure status sensing. Characteristics of the OoO process using a CNT film as a heating element are first examined and compared to those of an oven curing process, focusing on an aerospace-grade OoA-formulated unidirectional aerospace-grade CFRP prepreg system. Thermophysical and mechanical property comparisons suggest that there is no difference in laminates cured via OoO and oven curing as evaluated by void content, degree of cure analysis, short beam shear interlaminar testing, dynamic mechanical analysis, and double-edge notch tensile testing. The OoO process reduces electrical energy consumption by two orders of magnitude (from 13.7 to 0.12 MJ) due to conductive vs. convective heating, under a typical industrial curing condition for a small (60 mm x 50 mm) test panel. Modeling shows that for parts beyond a meter-scale, energy savings will also be at least two orders of magnitude. Moreover, comparative finite element modeling of the OoO and oven curing shows excellent agreement with measured values, including the reduction in electrical energy and instantaneous power consumption. Altogether, these findings show that OoO curing works for OoA prepreg systems, with significant energy savings. Given the results of the first study, the next study effectively removes the need for an autoclave by adapting the OoO process to conventional autoclave-formulated prepreg systems that currently require applied pressure of ~700 kPa in addition to vacuum. This technique entails OoO curing plus insertion of a nanoporous network (NPN, e.g., vertically aligned CNT arrays) into the interlaminar regions of autoclave-formulated composite laminates. Capillary pressure due to the NPN is calculated to be of the same order as the pressure applied in conventional autoclave processing. Results show that capillary-enhanced polymer wetting by the NPN enables sufficient reduction of interlaminar voids to levels commensurate with autoclave-processed composites. Thermophysical property comparisons and short beam shear interlaminar strength testing show that OoO-processed composites with NPN are equivalent to those of autoclave-cured composites, with energy and other savings similar to OoO curing with OoA prepreg in the first study. Conformability of the NPN to the micron-scale topology of the prepreg surface, and continuous vacuum channels created by the NPN, are identified as key factors underlying interlaminar void reduction. Finally, this dissertation introduces a multifunctional aspect of the OoO manufacturing: an in situ cure status monitoring technique utilizing the nanostructured CNT-based heating element of the OoO process. The OoO heating elements are nanoporous and CNT-based, but in this study have different morphology (randomly-oriented or in-plane aligned CNTs) than the NPN (vertically aligned CNTs, A-CNTs). As OoO curing proceeds and the heating element is powered, the adjacent polymer flows into the nanoporous heater via capillary action. Based on cure status sensing experiments and theoretical models, it is found that electrical resistance changes of the heating element correspond to several mechanisms associated with different stages in the cure process, including polymer infiltration into the CNT network that causes the average CNT-CNT junction distance to increase, giving a resistance increase. Later in the manufacturing, as the polymer cross-linking occurs after infiltration into the heating element, chemical cure shrinkage decreases the CNT-CNT junction distance, leading to a decrease in resistance. Thus, the heating element is multifunctional as a cure status sensor, and is found to be highly repeatable, demonstrating a new capability to enhance both quality and productivity of composite manufacturing. OoO curing and related processing techniques introduced here are expected to contribute to the design and manufacturing of next-generation multifunctional composite architectures. These processing techniques have several advantages, including: (1) compatibility with a wide range of composite materials, including OoA- and autoclave-formulated prepregs; (2) removal of size and shape constraints on composite components imposed by the use of a heating vessel; (3) manufacturing cost savings by efficient conductive (as opposed to convective) thermal processing; (4) production improvements via the in situ cure status monitoring by multifunctional heating elements as cure sensors; and (5) the potential for spatial heating control to accommodate structural features such as thick and thin transitions. Future work will expand the techniques to thermoplastics and other high-temperature polymers. The OoO techniques are expected to enable several systems-level production and operational savings, such as accelerated cure cycles, that require further study. Other areas of exploration include on-site composite curing and repair, and leveraging the spatial control of heat flux from the OoO technique into other OoA composite processes, such as resin infusion and resin transfer molding.
by Jeonyoon Lee.
Ph. D.
Książki na temat "Multifunctional Composite Nanomaterials"
Multifunctional Nanocomposites and Nanomaterials Conference (2nd 2008 Sharm El-Sheikh, Egypt). Proceedings of the ASME 2nd Multifunctional Nanocomposites and Nanomaterials Conference--2008: Presented at the 2008 2nd Multifunctional Nanocomposites and Nanomaterials Conference, January 11-13, 2008, Sharm El Sheikh, Egypt. New York, N.Y: ASME, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Multifunctional Composite Nanomaterials"
Kannan, Karthik, Devi Radhika, R. Suriyaprabha, Sreeja K. Satheesh i L. Sivarama Krishna. "Emergent Nanomaterials and Their Composite Fabrication for Multifunctional Applications". W Nanomaterials in Bionanotechnology, 109–27. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003139744-5.
Pełny tekst źródłaAlimuddin i Salman A. Khan. "Graphene-Analog Boron Nitride Nanomaterial and Their Photocatalytic Applications". W Multifunctional Boron-Nitride Composites, 115–29. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2866-8_5.
Pełny tekst źródłaBagheri, Samira, Nurhidayatullaili Muhd Julkapli i Negar Mansouri. "Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials". W Handbook of Composites from Renewable Materials, 523–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119441632.ch142.
Pełny tekst źródłaA. Butt, Hassaan, German V. Rogozhkin, Andrei Starkov, Dmitry V. Krasnikov i Albert G. Nasibulin. "Multifunctional Carbon Nanotube Reinforced Polymer/Fiber Composites: Fiber-Based Integration and Properties". W Next Generation Fiber-Reinforced Composites - New Insights [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108810.
Pełny tekst źródłaHoang Nam, Nguyen. "Multifunctional Silver Nanoparticles: Synthesis and Applications". W Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96712.
Pełny tekst źródła"Chapter 11 Formation of Multifunctional Fe3O4/Au Composite Nanoparticles for Dual-mode MR/CT Imaging Applications". W Synthesis and biomedical applications of magnetic nanomaterials, 307–24. EDP Sciences, 2022. http://dx.doi.org/10.1051/978-2-7598-2715-2.c013.
Pełny tekst źródłaAsghar, Hamza, Sara Baig, Mahnoor Naeem, Shamim Aslam, Aneeqa Bashir, Saadia Mumtaz, Muhammad Ikram i in. "Graphene Based Functional Hybrids: Design and Technological Applications". W Graphene - Recent Advances, Future Perspective and Applied Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108791.
Pełny tekst źródłaHenriques Ferreira, Sofia, Ana Rovisco, Andreia dos Santos, Hugo Águas, Rui Igreja, Pedro Barquinha, Elvira Fortunato i Rodrigo Martins. "Porous ZnO Nanostructures Synthesized by Microwave Hydrothermal Method for Energy Harvesting Applications". W Nanopores [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97060.
Pełny tekst źródła"Graphitic Carbon Nanomaterials for Multifunctional Nanocomposites". W Smart Composites, 91–112. CRC Press, 2013. http://dx.doi.org/10.1201/b16257-8.
Pełny tekst źródłaJohn, Sam, Sreelakshmi Rajeevan, K. P. Greeshma i Soney C. George. "Nanocellulose-based polymer composites for energy applications". W Applications of Multifunctional Nanomaterials, 167–75. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-820557-0.00031-x.
Pełny tekst źródłaStreszczenia konferencji na temat "Multifunctional Composite Nanomaterials"
Abdel Hamid, Dalia, Amal Esawi, Inas Sami i Randa Elsalawy. "Characterization of Nano- and Micro-Filled Resin Composites Used as Dental Restorative Materials". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47053.
Pełny tekst źródłaAly-Hassan, Mohamed S., Yuka Kobayashi, Asami Nakai i Hiroyuki Hamada. "Tensile and Shear Properties of Biaxial Flat Braided Carbon/Epoxy Composites With Dispersed Carbon Nanofibers in the Matrix". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47057.
Pełny tekst źródłaDu, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso i K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.
Pełny tekst źródłaGhasemi-Nejhad, Mehrdad N. "Multifunctional Hierarchical Nanocomposites: A Review". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65599.
Pełny tekst źródłaAbuali Galehdari, Nasim, i Ajit D. Kelkar. "Characterization of Nanoparticle Enhanced Multifunctional Sandwich Composites Subjected to Space Radiation". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66774.
Pełny tekst źródłaAly-Hassan, Mohamed S. "Novel Multifunctional Composites by Functionally Dispersed Carbon Nanotubes Throughout the Matrix of Carbon/Carbon Composites". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47024.
Pełny tekst źródłaNam, Duk-Hyun, Chang-Young Son, Chang Kyu Kim i Sunghak Lee. "Mechanical Properties of Cu-Based Amorphous Alloy Matrix Composites Consolidated by Spark Plasma Sintering". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47048.
Pełny tekst źródłaEl-Mahallawi, I. S., K. Eigenfeld, F. H. Kouta, A. Hussein, T. S. Mahmoud, R. M. Ragaie, A. Y. Shash i W. Abou-Al-Hassan. "Synthesis and Characterization of New Cast A356(Al2O3)P Metal Matrix Nano-Composites". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47049.
Pełny tekst źródłaEl-Ashry, Mostafa M., Kareem M. Gouda i Henry Daniel Young. "Production of Polymer Nanofibers by Wet Spinning". W ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47030.
Pełny tekst źródłaJiang, Zhangfan, Osman E. Ozbulut i Guohua Xing. "Self-Sensing Characterization of GNP and Carbon Black Filled Cementitious Composites". W ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5653.
Pełny tekst źródła