Gotowa bibliografia na temat „Multiferroic Oxides - Structural Properties”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multiferroic Oxides - Structural Properties”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multiferroic Oxides - Structural Properties"
Gareeva Z. V., Zvezdin A. K., Shulga N. V., Gareev T. T. i Chen X. M. "Mechanisms of magnetoelectric effects in oxide multiferroics with a perovskite praphase". Physics of the Solid State 64, nr 9 (2022): 1324. http://dx.doi.org/10.21883/pss.2022.09.54175.43hh.
Pełny tekst źródłaXu, Xiaoshan, i Wenbin Wang. "Multiferroic hexagonal ferrites (h-RFeO3, R = Y, Dy-Lu): a brief experimental review". Modern Physics Letters B 28, nr 21 (20.08.2014): 1430008. http://dx.doi.org/10.1142/s0217984914300087.
Pełny tekst źródłaLorenz, Michael. "Pulsed laser deposition of functional oxides - towards a transparent electronics". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1412. http://dx.doi.org/10.1107/s2053273314085878.
Pełny tekst źródłaWatson, Carla, Tara Peña, Marah Abdin, Tasneem Khan i Stephen M. Wu. "Dynamic adhesion of 2D materials to mixed-phase BiFeO3 structural phase transitions". Journal of Applied Physics 132, nr 4 (28.07.2022): 045301. http://dx.doi.org/10.1063/5.0096686.
Pełny tekst źródłaDash, Swagatika, R. N. P. Choudhary, Piyush R. Das i Ashok Kumar. "Structural, dielectric, and multiferroic properties of (Bi0.5K0.5)(Fe0.5Nb0.5)O3". Canadian Journal of Physics 93, nr 7 (lipiec 2015): 738–44. http://dx.doi.org/10.1139/cjp-2014-0025.
Pełny tekst źródłaPattanayak, Samita, R. N. P. Choudhary i Piyush R. Das. "Studies of electrical conductivity and magnetic properties of Bi1-xGdxFeO3 multiferroics". Journal of Advanced Dielectrics 04, nr 02 (kwiecień 2014): 1450011. http://dx.doi.org/10.1142/s2010135x14500118.
Pełny tekst źródłaBarrier, Nicolas. "Search for new tellurium and selenium oxides with potential ferroelectric and multiferroic properties". Acta Crystallographica Section A Foundations and Advances 75, a2 (18.08.2019): e204-e204. http://dx.doi.org/10.1107/s2053273319093525.
Pełny tekst źródłaMoustafa, A. M., S. A. Gad, G. M. Turky i L. M. Salah. "Structural, Magnetic, and Dielectric Spectroscopy Investigations of Multiferroic Composite Based on Perovskite–Spinel Approach". ECS Journal of Solid State Science and Technology 11, nr 3 (1.03.2022): 033008. http://dx.doi.org/10.1149/2162-8777/ac5c7d.
Pełny tekst źródłaSun, Shujie, i Xiaofeng Yin. "Progress and Perspectives on Aurivillius-Type Layered Ferroelectric Oxides in Binary Bi4Ti3O12-BiFeO3 System for Multifunctional Applications". Crystals 11, nr 1 (29.12.2020): 23. http://dx.doi.org/10.3390/cryst11010023.
Pełny tekst źródłaLi, Jun, Elena A. Medina, Judith K. Stalick, Arthur W. Sleight i M. A. Subramanian. "Structural studies of CaAl12O19, SrAl12O19, La2/3+δ Al12–δO19, and CaAl10NiTiO19 with the hibonite structure; indications of an unusual type of ferroelectricity". Zeitschrift für Naturforschung B 71, nr 5 (1.05.2016): 475–84. http://dx.doi.org/10.1515/znb-2015-0224.
Pełny tekst źródłaRozprawy doktorskie na temat "Multiferroic Oxides - Structural Properties"
Vaghefi, Seyedeh Pegah Mirzadeh. "Structural and physical properties studies on multiferroic oxide films and heterostructures". Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18502.
Pełny tekst źródłaO presente trabalho de doutoramento é um estudo de propriedades físicas e aspectos estruturais de filmes de óxidos e heteroestruturas multiferróicas, englobando técnicas de caracterização do nível macroscópico ao microscópico. O objectivo principal é a compreensão de novas heteroestruturas epitaxiais multifuncionais e as suas interfaces para junções de túnel magnetoelétricas e filtros de spin. Os principais materiais em estudo foram manganitas à base de La dopadas com iões divalentes (ba, Sr), apresentando efeito magnetoelétrico, sendo preparadas em diferentes substratos e diferentes técnicas de crescimento, optimizadas para epitaxia e qualidade de interface. O estudo combinado de propriedades eléctricas e magnéticas permitiu estabelecer as condições necessárias para a aplicação dos materiais multiferróicos em estudo, por técnicas experimentais apresentadas neste trabalho. O trabalho consistiu no estudo sistemático de microestrutura de filmes finos de La0:7Sr0:3MnO3 em substratos de SrTiO3, preparados por pulsed laser deposition, o filme fino de La0:9Ba0:1MnO3 e a heteroestrutura La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Al2O3, e filme fino de La0:9Ba0:1MnO3, BaTiO3 e heteroestrutura de La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Si, preparado por RF magnetron sputtering. A caracterização estrutural das amostras foi feita principalmente por difracção de raio-X (XRD) convencional e de alta resolução e Microscopia de Transmissão de Alta Resolução (HRTEM). A composição química foi analisada por Electron Dispersion Spectroscopy (EDS), Rutherford backscattering spectroscopy (RBS) e energy filtered transmission electron microscopy (EFTEM). As medidas de magnetização forram realizada com a um magnetómetro superconducting quantum interference device (SQUID). A análise da topografia e efeitos locais foi realizada por microscopia de varimento de ponta usando microscopia da Força Atómica (AFM) e de resposta piezoeléctronica (PFM). Os resultados mostram claramente uma evolução da microestrutura dos filmes finos de La0:7Sr0:3MnO3, á medida que aumenta a sua espessura, passando de uma estrutura policristalina no filme mais fino (13.5 nm) a colunar inclinado (45 nm e 200 nm), a uma estrutura ramificada no filme mais espesso (320 nm). A alteração na estrutura do filme é devida à tensão pelo substrato e deformação da estrutura nas etapas iniciais de crescimento, onde se detectaram fronteiras anti-phase e maclas. A evolução da estrutura modificou as propriedades magnéticas dos filmes a baixa temperatura (abaixo da temperatura de transição estrutural do substrato de SrTiO3), mostrando magnetização em excesso e defeito, para espessuras abaixo e acima de 100 nm, respectivamente. Análises STEM-EELS e EFTEM mostraram a diferença em composição elementar dos filmes perto das fronteiras e na interface com o substrato.No âmbito do plano de trabalhos de doutoramento, o segundo substrato consiste em estudar as propriedades físicas e estruturais de filmes finos de La0:9Ba0:1MnO3 e heteroestruturas La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substratos de Al2O3, revelando estruturas altamente orientadas. A razão La/Ba do filme e heteroestrutura é drasticamente diferente do alvo providenciado, La0:7Ba0:3MnO3, como provado por XRD, RBS e transições de fase magnéticas. As propriedades magnéticas e eléctricas das estruturas mostraram uma forte dependência na cristalinidade do filme e da heteroestrutura. A parte final do trabalho é dedicada aos filmes de La0:9Ba0:1MnO3, BaTiO3 e a heteroestrutura de La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 em substrato de Si, que em comparação com as estruturas em substrato de ALO, provaram o efeito da cristalinidade nas propriedades magnéticas, eléctricas e de magneto-resistência do filme e heteroestrutura. Foi mostrado que um grau superior de cristalinidade leva a uma mais elevada magnetização, reduzindo a resistividade das estruturas. Pela primeira vez, um estudo de deformação de topografia por aplicação de uma tensão dc externa foi feito num filme fino de BaTiO3 em Si, usando uma técnica de poling num microscópio de força piezoresponse. Os resultados mostraram a capacidade de uma modificação controlada da superfície, por aplicação de uma voltagem externa nointervalo 14V < Vapp < 20V. Abaixo destes valores, não se observou alguma deformação na topografia, enquanto acima deste intervalo, a 30V, a superfície foi completamente danificada. A mudança topográfica produzida mostrou estabilidade no tempo, onde após a aplicação de 20V, a área modificada alcançou 83% da altura as-poled ( 9 nm) em 90 minutos, a 7,4 nm. A resposta assimétrica de piezoresponse da área poled foi associada à existência de um campo eléctrico interno na amostra, que foi também provado através de medidas de espectroscopia de switching no filme fino. A heteroestrutura no substrato de Si mostraram o mesmo fenómeno que a mono-camada de BaTiO3, onde o arranjo de heteroestrutura realça o efeito de voltagem aplicada na topografia. Aplicando 10V, a estrutura da superfície foi alterada na heteroestrutura e houve uma modificação visível da camada de BaTiO3, alterando também a topografia da camada superior de La0:9Ba0:1MnO3.
This present PhD work made a study of structural aspects and physical properties of the oxide films and multiferroic heterostructures, encompassing the techniques from macroscopic level to microscopic description. The understanding of novel multifunctional epitaxial heterostructures and their interfaces for magneto-electrically driven tunnel junctions and spin-filters is the central objective. The main materials in study were La based doped manganites with magnetoelectric effect prepared on different substrates and growth conditions, optimized for epitaxy and interface quality. The combined study of electric and magnetic properties allowed us examining the conditions required for application of the studied multiferroic materials and experimental techniques are presented in this work. The work consists of three main substrates, a systematic study of microstructure of La0:7Sr0:3MnO3 thin films on SrTiO3 substrate, prepared by pulsed laser deposition, the La0:9Ba0:1MnO3 thin film and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Al2O3 substrate, and the La0:9Ba0:1MnO3 thin film, BaTiO3 and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Si substrate, prepared by RF magnetron sputtering. Main structural characterization of samples was performed by conventional and high resolution X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM); chemical composition was determined by Electron Dispersion Spectroscopy (EDS), Rutherford Backscattering Spectroscopy (RBS) and Energy Filtered Transmission Electron Microscopy (EFTEM); Magnetization measurements done with a Superconducting Quantum Interface Device (SQUID) magnetometer. Surface probing of topography and local effects was performed, using Atomic Force (AFM) and Piezo-Response (PFM) Microscopy. Results clearly showed that there is an evolution in the microstructure of the La0:7Sr0:3MnO3 thin films, by increasing their thickness, changing from polycrystalline structure in the thinnest film (13.5 nm) to tilted columnar structure(45 nm and 200 nm) and to a branched structure in the thickest film (320 nm). The change in the structure of the film is due to the strain from the substrate and deformation of the structure in the early stages of the growth, where anti-phase boundaries and twinning were detected. The evolution of the structure modified the low temperature (below structural phase transition of SrTiO3 substrate) magnetic properties of the films, showing in-excess and in-defect magnetization, below and above 100 nm thickness, respectively. Also, STEM-EELS and EFTEM analysis showed the difference in the elemental composition of the films near the boundaries and interface with the substrate.In the scope of the PhD work plan, the second substrate consists of studying the structural and physical properties of La0:9Ba0:1MnO3 thin film and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Al2O3 substrate, where they showed highly oriented structure. The La/Ba ratio of the single layer film and heterostructure is drastically different from the target, La0:7Ba0.3MnO3, proven by XRD, RBS, and magnetic phase transitions. The magnetic and electrical properties of the structures showed strong dependence on the crystallinity of the samples. The final part of the work is devoted to the La0:9Ba0:1MnO3 and BaTiO3 thin films and La0:9Ba0:1MnO3/BaTiO3/La0:9Ba0:1MnO3 heterostructure on Si substrate, which in comparison with the structures on Al2O3 substrate, highlights the influence of crystallinity on magnetic, ferro-electrical and magnetoresistance properties of the film and heterostructure. It is shown that higher degree of crystallinity leads to higher magnetization and lowers the resistivity. For the first time, a study of the topography deformation by applying a dcexternal voltage was done on BaTiO3 thin film on Si, using a poling technique in a piezoresponse force microscope. The results show the ability of controlled modification of the surface, by applying an external voltage/electric field in the range of 14V< Vapp<20V. Below this range, no deformation is observed on the topography, and above this interval, at 30V, the surface is completely damaged. The produced topographical change show stabilization in respect to time, where after applying 20V, the modified area reaches its 83% of the as-poled height ( 9nm) in 90 minutes, to 7.4 nm. The asymmetrical response in the piezoresponse of the poled area is related to the existence of an internal built-in electric field in the sample, which is also confirmed by performing switching spectroscopy measurements on the single layer. The heterostructure on the Si substrate shows the same phenomena, as the BTO single layer, where the heterostructure arrangement enhances the applied voltage effect on the topography. With applying 10V, the structure of the surface changes in the heterostructure and a visible modification of BaTiO3 layer, changing also the topography of La0:9Ba0:1MnO3 top layer is observed.
Rotaru, Andrei. "Novel polar dielectrics with the tetragonal tungsten bronze structure". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4184.
Pełny tekst źródłaGeatches, Rachel M. "Electrical and structural properties of metal oxides". Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278079.
Pełny tekst źródłaRegoutz, Anna. "Structural and electronic properties of metal oxides". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:6f425890-b211-4b35-b438-b8de18f7ae64.
Pełny tekst źródłaThrall, Michael. "The magnetic, electric and structural properties of multiferroic BiFeo3 and BiMnO3". Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492716.
Pełny tekst źródłaMillburn, Julie Elizabeth. "Structural and electronic properties of transition metal oxides". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364166.
Pełny tekst źródłaJones, Christopher Wynne. "Structural and electronic properties of mixed metal oxides". Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235645.
Pełny tekst źródłaAbbas, Hussien Ahmed, Fadwaa Fwad Hamad, Atrees Khair Mohamad, Zeinab Mohamad Hanafi i Martin Kilo. "Structural properties of zirconia doped with some oxides". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192913.
Pełny tekst źródłaAbbas, Hussien Ahmed, Fadwaa Fwad Hamad, Atrees Khair Mohamad, Zeinab Mohamad Hanafi i Martin Kilo. "Structural properties of zirconia doped with some oxides". Diffusion fundamentals 8 (2008) 7, S. 1-8, 2008. https://ul.qucosa.de/id/qucosa%3A14153.
Pełny tekst źródłaHarrison, W. T. A. "Structural and magnetic properties of some mixed metal oxides". Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379947.
Pełny tekst źródłaKsiążki na temat "Multiferroic Oxides - Structural Properties"
Cao, Gang, i Lance DeLong. Physics of Spin-Orbit-Coupled Oxides. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.001.0001.
Pełny tekst źródłaCzęści książek na temat "Multiferroic Oxides - Structural Properties"
Muneeswaran, Muniyandi, Mayakrishnan Gopiraman, Shanmuga Sundar Dhanabalan, N. V. Giridharan i Ali Akbari-Fakhrabadi. "Multiferroic Properties of Rare Earth-Doped BiFeO3 and Their Spintronic Applications". W Metal and Metal Oxides for Energy and Electronics, 375–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53065-5_11.
Pełny tekst źródłaMoodenbaugh, A. R., J. J. Hurst, T. Asano, R. L. Sabatini i M. Suenaga. "Superconducting Properties and Structural Characterization of High Tc Oxides". W Novel Superconductivity, 767–69. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1937-5_95.
Pełny tekst źródłaSayyed, Saima G., Annis A. Shaikh, Pankaj K. Bhujbal, Arif V. Shaikh, Habib M. Pathan i Prafulla Kumar Jha. "Structural and Electronic Properties of Various Useful Metal Oxides". W Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 49–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_3.
Pełny tekst źródłaSyono, Y., i M. Kikuchi. "Shock Effects on Structural and Superconducting Properties of High Tc Oxides". W Shock Waves in Materials Science, 101–12. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68240-0_5.
Pełny tekst źródłaBonačić-Koutecký, V., J. Pittner, R. Pou-Amérigo i M. Hartmann. "Ab-initio study of structural and optical properties of nonstoichiometric alkalimetal- oxides". W Small Particles and Inorganic Clusters, 445–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60854-4_105.
Pełny tekst źródłaLeng, Kai, Weiren Xia i Xinhua Zhu. "Advanced Nanostructured Perovskite Oxides: Synthesis, Physical Properties, Structural Characterizations and Functional Applications". W Advanced Ceramics for Energy and Environmental Applications, 13–81. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003005155-2.
Pełny tekst źródłaFarozan, Shama, Harendra Kumar Satyapal, Om Priya, Saurabh Sharma i Singh Sonu Kumar. "Effect of La3+ Substitution on Structural, Magnetic, and Multiferroic Properties of Bismuth Ferrite (Bi1-xLaxFeO3) Nanoceramics". W Computational and Experimental Methods in Mechanical Engineering, 105–13. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2857-3_13.
Pełny tekst źródłaRaveau, Bernard, i Claude Michel. "Mixed Valence Copper Oxides, High Tc Superconductors : Structural Study and Electron Transport Properties". W Novel Superconductivity, 599–610. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1937-5_69.
Pełny tekst źródłaMøller, P. J., S. A. Komolov i E. F. Lazneva. "Structural and Electronic Properties of Ultrathin Cu-Layers on some Crystalline Metal-Oxides". W Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, 156–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78632-7_15.
Pełny tekst źródłade Lazaro, Sergio R., Renan A. P. Ribeiro, Marisa C. Oliveira i Elson Longo. "Advanced DFT Atomistic Approaches for Electronic, Optical, and Structural Properties of Semiconductor Oxides". W Research Topics in Bioactivity, Environment and Energy, 255–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07622-0_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Multiferroic Oxides - Structural Properties"
Dhruv, Preksha N., Neha P. Solanki i Rajshree B. Jotania. "Structural properties of delafossite multiferroic CuFeO2 powder". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982089.
Pełny tekst źródłaSalmani, Imran Ahmad, Tahir Murtaza, Apurva Gupta, Mohd Shahid Khan i Mohd Saleem Khan. "Synthesis and structural properties of multiferroic Bi0.95Mg0.05FeO3". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032467.
Pełny tekst źródłaChotorlishvili, L., M. Azimi, S. Stagraczyński i J. Berakdar. "Quantum Heat Engines with Multiferroic Working Substance". W Symmetry and Structural Properties of Condensed Matter. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813234345_0001.
Pełny tekst źródłaGalav, K. L., V. Maurya i K. B. Joshi. "Structural and electronic properties of B2-CdNb". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982111.
Pełny tekst źródłaParekh, Sagar, Mohini Ramwala, Ruchi Rathod, Deobrat Singh, Sanjeev K. Gupta i Yogesh Sonvane. "Structural, electronic and ferroelectric properties of BaTcO3". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982114.
Pełny tekst źródłaChanu, Lisham Paris, i Sumitra Phanjoubam. "Structural and electrical properties of multiferroic YMnO3 and YMn0.9Cr0.06Ni0.04O3". W DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016671.
Pełny tekst źródłaSinha, A. K., B. Bhushan, D. Rout, R. K. Sharma, J. Gupta, S. Sen, M. D. Mukadam, S. S. Meena i S. M. Yusuf. "Structural and magnetic properties of Cr doped BiFeO3 multiferroic nanoparticles". W DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980321.
Pełny tekst źródłaBhasin, Tanvi, Ashish Agarwal, Sujata Sanghi, Manisha Yadav, Muskaan Tuteja, Jogender Singh i Sonia Rani. "Structural, dielectric and magnetic properties of ZnFe2O4-Na0.5Bi0.5TiO3 multiferroic composites". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029076.
Pełny tekst źródłaSagapariya, Khushal, K. N. Rathod, Keval Gadani, Hetal Boricha, V. G. Shrimali, Bhargav Rajyaguru, Amiras Donga i in. "Investigations on structural, optical and electrical properties of V2O5 nanoparticles". W FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982084.
Pełny tekst źródłaSingh, Manoj K., G. L. Sharma, S. Dussan i Ram S. Katiyar. "Structural properties of multiferroic CuFeO2 thin films prepared by RF sputtering". W 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693787.
Pełny tekst źródłaRaporty organizacyjne na temat "Multiferroic Oxides - Structural Properties"
Ahmed, M. A., M. S. Ayoub, M. M. Mostafa i M. M. El-Desoky. Structural and multiferroic properties of nanostructured barium doped Bismuth Ferrite. Redaktorzy Lotfia Elnai i Ramy Mawad. Journal of Modern trends in physics research, grudzień 2014. http://dx.doi.org/10.19138/mtpr/(14)81-89.
Pełny tekst źródłaChelikowsky, J. R. Theory of the electronic and structural properties of solid state oxides. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/6564106.
Pełny tekst źródłaDas, Supriyo. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides. Office of Scientific and Technical Information (OSTI), styczeń 2010. http://dx.doi.org/10.2172/985308.
Pełny tekst źródłaChelikowsky, J. R. Theory of the electronic and structural properties of solid state oxides. Annual technical report 1993. Office of Scientific and Technical Information (OSTI), czerwiec 1993. http://dx.doi.org/10.2172/10162151.
Pełny tekst źródłaChelikowsky, J. R. Theory of the electronic and structural properties of solid state oxides. Progress report, [July 1, 1992--June 30, 1993]. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/10159378.
Pełny tekst źródłaChelikowsky, J. R. Theory of the electronic and structural properties of solid state oxides. Progress report, [July 1, 1991--June 30, 1992]. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/10159577.
Pełny tekst źródła