Gotowa bibliografia na temat „Multi-stain segmentation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multi-stain segmentation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multi-stain segmentation"
Hassan, Loay, Mohamed Abdel-Nasser, Adel Saleh, Osama A. Omer i Domenec Puig. "Efficient Stain-Aware Nuclei Segmentation Deep Learning Framework for Multi-Center Histopathological Images". Electronics 10, nr 8 (16.04.2021): 954. http://dx.doi.org/10.3390/electronics10080954.
Pełny tekst źródłaAbdel-Nasser, Mohamed, Vivek Kumar Singh i Ehab Mahmoud Mohamed. "Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network". Diagnostics 12, nr 12 (2.12.2022): 3024. http://dx.doi.org/10.3390/diagnostics12123024.
Pełny tekst źródłaXu, Xiaoping, Meirong Ji, Bobin Chen i Guowei Lin. "Analysis on Characteristics of Dysplasia in 345 Patients with Myelodysplastic Syndrome". Blood 112, nr 11 (16.11.2008): 5100. http://dx.doi.org/10.1182/blood.v112.11.5100.5100.
Pełny tekst źródłaAlvarsson, Alexandra, Carl Storey, Brandy Olin Pope, Caleb Stoltzfus, Robert Vierkant, Jessica Tufariello, Aaron Bungum i in. "Abstract 6624: 3D assessment of the lung cancer microenvironment using multi-resolution open-top light-sheet microscopy". Cancer Research 83, nr 7_Supplement (4.04.2023): 6624. http://dx.doi.org/10.1158/1538-7445.am2023-6624.
Pełny tekst źródłaSchuerch, Christian, Graham L. Barlow, Salil S. Bhate, Nikolay Samusik, Garry P. Nolan i Yury Goltsev. "Dynamics of the Bone Marrow Microenvironment during Leukemic Progression Revealed By Codex Hyper-Parameter Tissue Imaging". Blood 132, Supplement 1 (29.11.2018): 935. http://dx.doi.org/10.1182/blood-2018-99-111708.
Pełny tekst źródłaWarr, Ryan, Stephan Handschuh, Martin Glösmann, Robert J. Cernik i Philip J. Withers. "Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography". Scientific Reports 12, nr 1 (19.12.2022). http://dx.doi.org/10.1038/s41598-022-23592-0.
Pełny tekst źródłaGour, Mahesh, Sweta Jain i T. Sunil Kumar. "Robust nuclei segmentation with encoder‐decoder network from the histopathological images". International Journal of Imaging Systems and Technology 34, nr 4 (30.05.2024). http://dx.doi.org/10.1002/ima.23111.
Pełny tekst źródłaHuang, Zhi, Wei Shao, Zhi Han, Ahmad Mahmoud Alkashash, Carlo De la Sancha, Anil V. Parwani, Hiroaki Nitta i in. "Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images". npj Precision Oncology 7, nr 1 (27.01.2023). http://dx.doi.org/10.1038/s41698-023-00352-5.
Pełny tekst źródłaCazzaniga, Giorgio, Mattia Rossi, Albino Eccher, Ilaria Girolami, Vincenzo L’Imperio, Hien Van Nguyen, Jan Ulrich Becker i in. "Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions". Journal of Nephrology, 28.09.2023. http://dx.doi.org/10.1007/s40620-023-01775-w.
Pełny tekst źródłaWarr, Ryan, Evelina Ametova, Robert J. Cernik, Gemma Fardell, Stephan Handschuh, Jakob S. Jørgensen, Evangelos Papoutsellis, Edoardo Pasca i Philip J. Withers. "Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction". Scientific Reports 11, nr 1 (21.10.2021). http://dx.doi.org/10.1038/s41598-021-00146-4.
Pełny tekst źródłaRozprawy doktorskie na temat "Multi-stain segmentation"
Nisar, Zeeshan. "Self-supervised learning in the presence of limited labelled data for digital histopathology". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Pełny tekst źródłaA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision
Części książek na temat "Multi-stain segmentation"
Taixé, L. Leal, A. U. Coskun, B. Rosenhahn i D. H. Brooks. "Automatic Segmentation of Arteries in Multi-stain Histology Images". W IFMBE Proceedings, 2000–2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_531.
Pełny tekst źródłaStreszczenia konferencji na temat "Multi-stain segmentation"
Wang, Ruochan, i Sei-ichiro Kamata. "Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation". W 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Pełny tekst źródłaWang, Ruochan, i Sei-ichiro Kamata. "Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation". W 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Pełny tekst źródłaGraham, S., i N. M. Rajpoot. "SAMS-NET: Stain-aware multi-scale network for instance-based nuclei segmentation in histology images". W 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363645.
Pełny tekst źródła