Gotowa bibliografia na temat „Multi principal element alloys”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multi principal element alloys”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multi principal element alloys"
Reiberg, Marius, Leonhard Hitzler, Lukas Apfelbacher, Jochen Schanz, David Kolb, Harald Riegel i Ewald Werner. "Additive Manufacturing of CrFeNiTi Multi-Principal Element Alloys". Materials 15, nr 22 (8.11.2022): 7892. http://dx.doi.org/10.3390/ma15227892.
Pełny tekst źródłaDerimow, N., R. F. Jaime, B. Le i R. Abbaschian. "Hexagonal (CoCrCuTi)100-Fe multi-principal element alloys". Materials Chemistry and Physics 261 (marzec 2021): 124190. http://dx.doi.org/10.1016/j.matchemphys.2020.124190.
Pełny tekst źródłaScully, John R., Samuel B. Inman, Angela Y. Gerard, Christopher D. Taylor, Wolfgang Windl, Daniel K. Schreiber, Pin Lu, James E. Saal i Gerald S. Frankel. "Controlling the corrosion resistance of multi-principal element alloys". Scripta Materialia 188 (listopad 2020): 96–101. http://dx.doi.org/10.1016/j.scriptamat.2020.06.065.
Pełny tekst źródłaCharpagne, M. A., K. V. Vamsi, Y. M. Eggeler, S. P. Murray, C. Frey, S. K. Kolli i T. M. Pollock. "Design of Nickel-Cobalt-Ruthenium multi-principal element alloys". Acta Materialia 194 (sierpień 2020): 224–35. http://dx.doi.org/10.1016/j.actamat.2020.05.003.
Pełny tekst źródłaChoudhury, Amitava, Tanmay Konnur, P. P. Chattopadhyay i Snehanshu Pal. "Structure prediction of multi-principal element alloys using ensemble learning". Engineering Computations 37, nr 3 (21.11.2019): 1003–22. http://dx.doi.org/10.1108/ec-04-2019-0151.
Pełny tekst źródłaXie, Chenyang, Xuejie Li, Fan Sun, Junsoo HAN i Kevin Ogle. "The Spontaneous Repassivation of Cr Containing Steels and Multi-Principal Element Alloys". ECS Meeting Abstracts MA2022-02, nr 11 (9.10.2022): 735. http://dx.doi.org/10.1149/ma2022-0211735mtgabs.
Pełny tekst źródłaXing, Bin, Xinyi Wang, William J. Bowman i Penghui Cao. "Short-range order localizing diffusion in multi-principal element alloys". Scripta Materialia 210 (marzec 2022): 114450. http://dx.doi.org/10.1016/j.scriptamat.2021.114450.
Pełny tekst źródłaZhao, Shijun, Yaoxu Xiong, Shihua Ma, Jun Zhang, Biao Xu i Ji-Jung Kai. "Defect accumulation and evolution in refractory multi-principal element alloys". Acta Materialia 219 (październik 2021): 117233. http://dx.doi.org/10.1016/j.actamat.2021.117233.
Pełny tekst źródłaSenkov, O. N., J. D. Miller, D. B. Miracle i C. Woodward. "Accelerated exploration of multi-principal element alloys for structural applications". Calphad 50 (wrzesień 2015): 32–48. http://dx.doi.org/10.1016/j.calphad.2015.04.009.
Pełny tekst źródłaIslam, Nusrat, Wenjiang Huang i Houlong L. Zhuang. "Machine learning for phase selection in multi-principal element alloys". Computational Materials Science 150 (lipiec 2018): 230–35. http://dx.doi.org/10.1016/j.commatsci.2018.04.003.
Pełny tekst źródłaRozprawy doktorskie na temat "Multi principal element alloys"
Mridha, Sanghita. "Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984260/.
Pełny tekst źródłaSlone, Connor. "Influence of composition and processing on the mechanical response of multi-principal element alloys containing Ni, Cr, and Co". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555522223986934.
Pełny tekst źródłaBryant, Nathan J. "EXPERIMENTAL VALIDATION OF THE CALPHAD APPROACH APPLIED TO MULTI-PRINCIPLE ELEMENT ALLOYS". Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1433176902.
Pełny tekst źródłaAkbari, Azin. "COMBINATORIAL SCREENING APPROACH IN DEVELOPING NON-EQUIATOMIC HIGH ENTROPY ALLOYS". UKnowledge, 2018. https://uknowledge.uky.edu/cme_etds/87.
Pełny tekst źródłaJha, Rajesh. "Combined Computational-Experimental Design of High-Temperature, High-Intensity Permanent Magnetic Alloys with Minimal Addition of Rare-Earth Elements". FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2621.
Pełny tekst źródłaO'Donnell, Martin. "Finite element modelling of a multi-stage stretch-forming operation using aerospace alloys". Thesis, University of Ulster, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270463.
Pełny tekst źródłaPaquet, Daniel. "Adaptive Multi-level Model for Multi-scale Ductile Fracture Analysis in Heterogeneous Aluminum Alloys". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1324565883.
Pełny tekst źródłaTedjaseputra, Erik Nugroho. "Numerical Simulations of Microstructure-based Crystal Plasticity Finite Element Model for Titanium and Nickel Alloys". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1325084673.
Pełny tekst źródłaBunnell, Spencer Reese. "Real Time Design Space Exploration of Static and Vibratory Structural Responses in Turbomachinery Through Surrogate Modeling with Principal Components". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8451.
Pełny tekst źródłaXu, Rui. "Multiscale modeling of heterogeneous materials : application to Shape Memory Alloys". Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0066.
Pełny tekst źródłaThe main aim of this thesis is to develop advanced and efficient multiscale modeling and simulation techniques for Shape Memory Alloys (SMAs) composite and architected materials. Towards this end, a 3D generic multiscale model for architected SMAs is implemented in ABAQUS, where a thermodynamic model, proposed by Chemisky et al. [1], is adopted to describe the local constitutive behavior of the SMA, and the multiscale finite element method (FE2) to realize the real-time interaction between the microscopic and macroscopic levels. Microscopic fiber instability is also efficiently investigated in this framework by introducing the Asymptotic Numerical Method (ANM) and the Technique of Slowly Variable Fourier Coefficients (TSVFC). To improve the computational efficiency of the concurrent mulitscale approach, in which tremendous microscopic problems are solved online to update macroscopic stress, data-driven multiscale computing methods are proposed for composite structures. Decoupling the correlated scales in concurrent FE2 framework, microscopic problems are solved offline, while the online macroscopic computational cost is significantly reduced. Further, by formulating the data-driven scheme in generalized stress and strain, Structural-Genome-Driven computing is developed for thin-walled composite structures
Książki na temat "Multi principal element alloys"
O'Donnell, Martin. Finite element modelling of a multi-stage stretch-forming operation using aerospace alloys. [S.l: The author], 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Multi principal element alloys"
Han, Linge, Hui Jiang, Dongxu Qiao, Yiping Lu i Tongmin Wang. "Effects of Iron on Microstructure and Properties of CoCrFexNi Multi-principal Element Alloys". W Advanced Functional Materials, 253–58. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0110-0_28.
Pełny tekst źródłaChau, Nguyen Hai, Masatoshi Kubo, Le Viet Hai i Tomoyuki Yamamoto. "Phase Prediction of Multi-principal Element Alloys Using Support Vector Machine and Bayesian Optimization". W Intelligent Information and Database Systems, 155–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73280-6_13.
Pełny tekst źródłaBeniwal, Dishant, Jhalak i Pratik K. Ray. "Data-Driven Phase Selection, Property Prediction and Force-Field Development in Multi-Principal Element Alloys". W Forcefields for Atomistic-Scale Simulations: Materials and Applications, 315–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3092-8_16.
Pełny tekst źródłaJayaraman, Tanjore V., i Ramachandra Canumalla. "Data-driven Search and Selection of Ti-containing Multi-principal Element Alloys for Aeroengine Parts". W The Minerals, Metals & Materials Series, 501–16. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22524-6_45.
Pełny tekst źródłaBarton, G., X. Li i Gerhard Hirt. "Finite-Element Modeling of Multi-Pass Forging of Nickel-Base Alloys Using a Multi-Mesh Method". W THERMEC 2006, 2503–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2503.
Pełny tekst źródłaGroßmann, Christian, Andreas Schäfer i Martin F. X. Wagner. "Finite Element Simulation of Localized Phase Transformations in Pseudoelastic NiTi Shape Memory Alloys Subjected to Multi-Axial Stress States". W ICOMAT, 525–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803592.ch76.
Pełny tekst źródłaSharma, Prince, Nushrat Naushin, Sahil Rohila i Abhishek Tiwari. "Magnesium containing High Entropy Alloys". W Magnesium Alloys Structure and Properties [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98557.
Pełny tekst źródłaSun, Yugang. "Microwave-enabled flash heating and cooling for synthesizing single-phase multi-principal element alloy nanoparticles". W Reference Module in Materials Science and Materials Engineering. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822425-0.00118-4.
Pełny tekst źródłaMing, Kaisheng, Shijian Zheng i Jian Wang. "Microstructures and Deformation Mechanisms of FCC-Phase High-Entropy Alloys". W High Entropy Alloys - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104822.
Pełny tekst źródłaPoon, S. Joseph, i Jian He. "Multi-Principal-Element Approach to High-Performance Thermoelectric Materials". W Reference Module in Materials Science and Materials Engineering. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-803581-8.11719-9.
Pełny tekst źródłaStreszczenia konferencji na temat "Multi principal element alloys"
Scully, John. "Corrosion and passivation of multi-principal element alloys in aqueous solutions". W 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09921.
Pełny tekst źródłaAksoy, Doruk, Megan McCarthy, Ian Geiger i Timothy Rupert. "Local and Near-Boundary Environments in NbMoTaW Refractory Multi-Principal Element Alloy." W Proposed for presentation at the 2nd World Congress on High Entropy Alloys (HEA 2021) held December 5-8, 2021 in Charlotte, North Carolina. US DOE, 2021. http://dx.doi.org/10.2172/1905965.
Pełny tekst źródłaBirbilis, Nick, Sanjay Choudhary i Sebastian Thomas. "On the corrosion and passivation of lightweight Al-based multi-principal element alloys (MPEAs)". W 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09919.
Pełny tekst źródłaParedes, Marcelo. "High Entropy Alloys as a New Alternative to Corrosion-Resistant Alloys For Marine Applications". W SNAME 28th Offshore Symposium. SNAME, 2023. http://dx.doi.org/10.5957/tos-2023-020.
Pełny tekst źródłaFrankel, Gerald, Christopher Taylor, Yehia Khalifa i Anup Panindre. "Corrosion of single-phase Ni-Fe-Cr-Mo-W-X non-equimolar multi-principal element alloys". W 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09922.
Pełny tekst źródłaHan, Junsoo, Pin Lu, James Saal, Gerald Frankel, Kevin Ogle i John Scully. "Refining anodic and cathodic dissolution mechanisms of the multi-principal element alloys using atomic emission spectroelectrochemistry coupled with electrochemical impedance spectroscopy". W 1st Corrosion and Materials Degradation Web Conference. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/cmdwc2021-09920.
Pełny tekst źródłaGerdt, L., M. Müller, M. Heidowitzsch, J. Kaspar, E. Lopez, M. Zimmermann, C. Leyens, A. Hilhorst i P. J. Jacques. "Alloy Design of Feedstock Material for Additive Manufacturing—Exploring the Al-Co-Cr-Fe-Ni-Ti Compositionally Complex Alloys". W ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0414.
Pełny tekst źródłaDemers, Sébastien, Abdel-Hakim Bouzid i Sylvie Nadeau. "Analytical and Finite Element Multi-Shell Modelling of an Intervertebral Disc". W ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78194.
Pełny tekst źródłaAng, Andrew S. M., Christopher C. Berndt, Mitchell L. Sesso, Ameey Anupam, Praveen S. Ravi Sankar Kottada i B. S. Murty. "Comparison of Plasma Sprayed High Entropy Alloys with Conventional Bond Coat Materials". W ITSC2015, redaktorzy A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen i C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0027.
Pełny tekst źródłaBrown, Jeffrey M., Alex A. Kaszynski, Daniel L. Gillaugh, Emily B. Carper i Joseph A. Beck. "Gaussian Stochastic Process Modeling of Blend Repaired Airfoil Modal Response Using Reduced Basis Mode Shape Approach". W ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60238.
Pełny tekst źródłaRaporty organizacyjne na temat "Multi principal element alloys"
Sharma, Aayush. Multi-principal element alloys: Design, properties and heuristic explorations. Office of Scientific and Technical Information (OSTI), listopad 2019. http://dx.doi.org/10.2172/1593312.
Pełny tekst źródła