Artykuły w czasopismach na temat „Multi-photon polymerization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Multi-photon polymerization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Huang, Ying, Yusheng Zhang, Yuming Su, Zhenghao Zhai, Jiawei Chen i Cheng Wang. "Two-photon induced polymerization in a porous polymer film to create multi-layer structures". Chemical Communications 57, nr 37 (2021): 4516–19. http://dx.doi.org/10.1039/d1cc01383a.
Pełny tekst źródłaLin, Jieqiong, Peng Liu, Xian Jing, Mingming Lu, Kaixuan Wang i Jie Sun. "Stochastic Multi-Molecular Modeling Method of Organic-Modified Ceramics in Two-Photon Induced Photopolymerization". Materials 12, nr 23 (24.11.2019): 3876. http://dx.doi.org/10.3390/ma12233876.
Pełny tekst źródłaVerbitsky, Lior, Nir Waiskopf, Shlomo Magdassi i Uri Banin. "A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization". Nanoscale 11, nr 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.
Pełny tekst źródłaGlöckler, Felix, Florian Hausladen, Igor Alekseenko, Alexander Gröger, Giancarlo Pedrini i Daniel Claus. "Two-photon-polymerization enabled and enhanced multi-channel fibre switch". Engineering Research Express 3, nr 4 (11.11.2021): 045016. http://dx.doi.org/10.1088/2631-8695/ac34c5.
Pełny tekst źródłaPisanello, Marco, Di Zheng, Antonio Balena, Filippo Pisano, Massimo De Vittorio i Ferruccio Pisanello. "An open source three-mirror laser scanning holographic two-photon lithography system". PLOS ONE 17, nr 4 (15.04.2022): e0265678. http://dx.doi.org/10.1371/journal.pone.0265678.
Pełny tekst źródłaFilippidis, G., J. Catherine, M. Farsari, V. Zorba i C. Fotakis. "Construction of micron three-dimensional structures employing multi-photon polymerization". Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, nr 4 (grudzień 2005): 165–68. http://dx.doi.org/10.1243/17403499jnn48.
Pełny tekst źródłaZhao, Yuxia, Xue Li, Feipeng Wu i Xiangyun Fang. "Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives". Journal of Photochemistry and Photobiology A: Chemistry 177, nr 1 (styczeń 2006): 12–16. http://dx.doi.org/10.1016/j.jphotochem.2005.05.006.
Pełny tekst źródłaCui, Hai-Bo, Yan Li, Zhao-Pei Liu, Hong Yang i Qi-Huang Gong. "Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization". Applied Physics A 105, nr 4 (19.08.2011): 897–901. http://dx.doi.org/10.1007/s00339-011-6539-1.
Pełny tekst źródłaLee, W., S. A. Pruzinsky i P. V. Braun. "Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals". Advanced Materials 14, nr 4 (19.02.2002): 271–74. http://dx.doi.org/10.1002/1521-4095(20020219)14:4<271::aid-adma271>3.0.co;2-y.
Pełny tekst źródłaParkatzidis, Kostas, Maria Chatzinikolaidou, Eleftherios Koufakis, Maria Kaliva, Maria Farsari i Maria Vamvakaki. "Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity". Polymer Chemistry 11, nr 25 (2020): 4078–83. http://dx.doi.org/10.1039/d0py00281j.
Pełny tekst źródłaVizsnyiczai, Gaszton, Lóránd Kelemen i Pál Ormos. "Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms". Optics Express 22, nr 20 (25.09.2014): 24217. http://dx.doi.org/10.1364/oe.22.024217.
Pełny tekst źródłaObata, Kotaro, Jürgen Koch, Ulf Hinze i Boris N. Chichkov. "Multi-focus two-photon polymerization technique based on individually controlled phase modulation". Optics Express 18, nr 16 (29.07.2010): 17193. http://dx.doi.org/10.1364/oe.18.017193.
Pełny tekst źródłaYan, Yun-Xing, Xu-Tang Tao, Yuan-Hong Sun, Chuan-Kui Wang, Gui-Bao Xu, Jia-Xiang Yang, Yan Ren i in. "Synthesis and nonlinear optical properties of novel multi-branched two-photon polymerization initiators". Journal of Materials Chemistry 14, nr 20 (2004): 2995. http://dx.doi.org/10.1039/b403777d.
Pełny tekst źródłaShao, Yuchen, Yuan'an Zhao, Hao Ma, Cheng Li, Dawei Li i Jianda Shao. "Refining multi-photon polymerization feature size by optimizing solvent content in SU-8 photoresist". Optical Materials 112 (luty 2021): 110800. http://dx.doi.org/10.1016/j.optmat.2021.110800.
Pełny tekst źródłaShao, Yuchen, Yuan'an Zhao, Hao Ma, Cheng Li, Dawei Li i Jianda Shao. "Refining multi-photon polymerization feature size by optimizing solvent content in SU-8 photoresist". Optical Materials 112 (luty 2021): 110800. http://dx.doi.org/10.1016/j.optmat.2021.110800.
Pełny tekst źródłaGalanopoulos, Stratos, Nikoleta Chatzidai, Vasileia Melissinaki, Alexandros Selimis, Charalampos Schizas, Maria Farsari i Dimitris Karalekas. "Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization". Micromachines 5, nr 3 (6.08.2014): 505–14. http://dx.doi.org/10.3390/mi5030505.
Pełny tekst źródłaFranklin, Daniel, Yun-Han Lee, Ziqian He, Debashis Chanda i Shin-Tson Wu. "44-3: Large Area Multi-Layer Liquid Crystal Phase Modulators Enabled by Two-Photon Polymerization". SID Symposium Digest of Technical Papers 49, nr 1 (maj 2018): 585–88. http://dx.doi.org/10.1002/sdtp.12417.
Pełny tekst źródłaPanusa, Giulia, Ye Pu, Jieping Wang, Christophe Moser i Demetri Psaltis. "Fabrication of Sub-Micron Polymer Waveguides through Two-Photon Polymerization in Polydimethylsiloxane". Polymers 12, nr 11 (26.10.2020): 2485. http://dx.doi.org/10.3390/polym12112485.
Pełny tekst źródłaBasu, Swarna, i Paul J. Campagnola. "3-D Nano and Microscale Regional Control of Bioactivity Through Multi-photon Excited Crosslinking and Polymerization". Microscopy and Microanalysis 10, S02 (sierpień 2004): 1430–31. http://dx.doi.org/10.1017/s1431927604882242.
Pełny tekst źródłaMikhaylov, Andrey, Stefan Reich, Margarita Zakharova, Vitor Vlnieska, Roman Laptev, Anton Plech i Danays Kunka. "Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging". Journal of Synchrotron Radiation 27, nr 3 (22.04.2020): 788–95. http://dx.doi.org/10.1107/s1600577520002830.
Pełny tekst źródłaSkliutas, Edvinas, Migle Lebedevaite, Elmina Kabouraki, Tommaso Baldacchini, Jolita Ostrauskaite, Maria Vamvakaki, Maria Farsari, Saulius Juodkazis i Mangirdas Malinauskas. "Polymerization mechanisms initiated by spatio-temporally confined light". Nanophotonics 10, nr 4 (1.01.2021): 1211–42. http://dx.doi.org/10.1515/nanoph-2020-0551.
Pełny tekst źródłaShao, Yuchen, Yuan'an Zhao, Hao Ma, Meiling Chen, Yafei Lian i Jianda Shao. "An easy method to improve efficiency of multi-photon polymerization: Introducing solvents with nonlinear optical absorption into photoresist". Optics & Laser Technology 151 (lipiec 2022): 108008. http://dx.doi.org/10.1016/j.optlastec.2022.108008.
Pełny tekst źródłaScheiner, Brett, Mark J. Schmitt, Derek Schmidt, Lynne Goodwin i Frederic J. Marshall. "Two-photon polymerization printed lattices as support structures in multi-shell ICF targets: Platform development and initial assessment". Physics of Plasmas 27, nr 12 (grudzień 2020): 122702. http://dx.doi.org/10.1063/5.0027820.
Pełny tekst źródłaLi, Chi, Changrui Liao, Jia Wang, Zongsong Gan i Yiping Wang. "Femtosecond Laser Microprinting of a Polymer Optical Fiber Interferometer for High-Sensitivity Temperature Measurement". Polymers 10, nr 11 (26.10.2018): 1192. http://dx.doi.org/10.3390/polym10111192.
Pełny tekst źródłaKurth, Daniel, Simon Ristok, Sopie Rühle, Alexander Verl i Harald Giessen. "Multi-axis two photon polymerization machine and software concept for the manufacturing of aspheric lenses on non-planar substrates". Procedia CIRP 118 (2023): 682–87. http://dx.doi.org/10.1016/j.procir.2023.06.117.
Pełny tekst źródłaItoh, Noriaki, Chihiro Itoh i Jun'ichi Kanasaki. "Comparison of Electronic-Excitation-Induced Structural Modification of Carbon-Based Nanomaterials with that of Semiconductor Surfaces". Nano 11, nr 06 (czerwiec 2016): 1630001. http://dx.doi.org/10.1142/s1793292016300012.
Pełny tekst źródłaRazzaq, Muhammad Yasar, Joamin Gonzalez-Gutierrez, Gregory Mertz, David Ruch, Daniel F. Schmidt i Stephan Westermann. "4D Printing of Multicomponent Shape-Memory Polymer Formulations". Applied Sciences 12, nr 15 (5.08.2022): 7880. http://dx.doi.org/10.3390/app12157880.
Pełny tekst źródłaDanilevičius, P., A. Žukauskas, G. Bičkauskaitė, V. Purlys, M. Rutkauskas, T. Gertus, D. Paipulas, J. Matukaitė, D. Baltriukienė i M. Malinauskas. "Laser-Micro/Nanofabricated 3D Polymers for Tissue Engineering Applications". Latvian Journal of Physics and Technical Sciences 48, nr 2 (1.01.2011): 32–43. http://dx.doi.org/10.2478/v10047-011-0013-x.
Pełny tekst źródłaTao, Yufeng, Liansheng Lin, Xudong Ren, Xuejiao Wang, Xia Cao, Heng Gu, Yunxia Ye, Yunpeng Ren i Zhiming Zhang. "Four-Dimensional Micro/Nanorobots via Laser Photochemical Synthesis towards the Molecular Scale". Micromachines 14, nr 9 (24.08.2023): 1656. http://dx.doi.org/10.3390/mi14091656.
Pełny tekst źródłaStankevičius, Evaldas, Mangirdas Malinauskas i Gediminas Račiukaitis. "Fabrication of Scaffolds and Micro-Lenses Array in a Negative Photopolymer SZ2080 by Multi-Photon Polymerization and Four-Femtosecond-Beam Interference". Physics Procedia 12 (2011): 82–88. http://dx.doi.org/10.1016/j.phpro.2011.03.109.
Pełny tekst źródłaDemirbay, Barış, i Şaziye Uğur. "Experimental Investigation of Morphological and Electrical Characteristics of PS/MWCNT Nanocomposite Films". Materials Science Forum 915 (marzec 2018): 104–9. http://dx.doi.org/10.4028/www.scientific.net/msf.915.104.
Pełny tekst źródłaMaibohm, Christian, Alberto Saldana-Lopez, Oscar F. Silvestre i Jana B. Nieder. "3D Polymer Structures for the Identification of Optimal Dimensions for Cellular Growth for 3D Lung Alveolar Models". Engineering Proceedings 4, nr 1 (16.04.2021): 33. http://dx.doi.org/10.3390/micromachines2021-09596.
Pełny tekst źródłaRemuzzi, Andrea, Barbara Bonandrini, Matteo Tironi, Lorena Longaretti, Marina Figliuzzi, Sara Conti, Tommaso Zandrini, Roberto Osellame, Giulio Cerullo i Manuela Teresa Raimondi. "Effect of the 3D Artificial Nichoid on the Morphology and Mechanobiological Response of Mesenchymal Stem Cells Cultured In Vitro". Cells 9, nr 8 (11.08.2020): 1873. http://dx.doi.org/10.3390/cells9081873.
Pełny tekst źródłaSadat Arabjafari, Maliheh, Farzaneh Bayat, Kazem Jamshidi-Ghaleh, Ali Reza Amani-Ghadim, Ali Fatemi i Milad Rasouli. "(Digital Presentation) Synthesis of Multisize Layered Silica Inverse Opal Photonic Crystals". ECS Meeting Abstracts MA2022-01, nr 32 (7.07.2022): 2509. http://dx.doi.org/10.1149/ma2022-01322509mtgabs.
Pełny tekst źródłaMaurel, Alexis, Ana Cristina Martinez, Sylvie Grugeon, Stephane Panier, Loic Dupont, Michel Armand, Roberto Russo i in. "(Battery Division Postdoctoral Associate Research Award Sponsored by MTI Corporation and the Jiang Family Foundation) 3D Printing of Batteries: Fiction or Reality?" ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 214. http://dx.doi.org/10.1149/ma2022-023214mtgabs.
Pełny tekst źródłaWu, Xingyu, Mehdi Belqat, Benjamin Leuschel, Guillaume Noirbent, Frédéric Dumur, Karine Mougin i Arnaud Spangenberg. "Investigation of two-photon polymerized microstructures using fluorescence lifetime measurements". Polymer Chemistry, 2022. http://dx.doi.org/10.1039/d1py01728d.
Pełny tekst źródłaZhang, Qianyi, Antoine Boniface, Virendra K. Parashar, Martin A. M. Gijs i Christophe Moser. "Multi-photon polymerization using upconversion nanoparticles for tunable feature-size printing". Nanophotonics, 10.01.2023. http://dx.doi.org/10.1515/nanoph-2022-0598.
Pełny tekst źródłaLee, Yun-Han, Daniel Franklin, Fangwang Gou, Guigeng Liu, Fenglin Peng, Debashis Chanda i Shin-Tson Wu. "Two-photon polymerization enabled multi-layer liquid crystal phase modulator". Scientific Reports 7, nr 1 (24.11.2017). http://dx.doi.org/10.1038/s41598-017-16596-8.
Pełny tekst źródłaXiong, Wei, Yunshen Zhou, Xiangnan He, Yang Gao, Masoud Mahjouri-Samani, Tommaso Baldacchini i Yongfeng Lu. "Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing". MRS Proceedings 1499 (2013). http://dx.doi.org/10.1557/opl.2013.443.
Pełny tekst źródłaOgor, Florie, Thomas Le Deun, Emma Van Elslande, Azeddine Tellal, Akos Banyasz, Manuel Flury i Kevin Heggarty. "Modelling and simulation of a massively parallelised multi‐photon polymerization 3D microfabrication process". physica status solidi (a), 12.10.2023. http://dx.doi.org/10.1002/pssa.202300486.
Pełny tekst źródłaSingh, Gaganpreet, Deepak Mishra, Janakarajan Ramkumar i Subramanian Anantha Ramakrishna. "Large area fabrication of single micron features using two-photon polymerization with sub-nanosecond laser". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 10.03.2022, 095440542210777. http://dx.doi.org/10.1177/09544054221077781.
Pełny tekst źródłaGeng, Qiang, Dien Wang, Pengfei Chen i Shih-Chi Chen. "Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization". Nature Communications 10, nr 1 (16.05.2019). http://dx.doi.org/10.1038/s41467-019-10249-2.
Pełny tekst źródłaWdowiak, Emilia, Michał Ziemczonok, Juan Martinez-Carranza i Arkadiusz Kuś. "Phase-assisted multi-material two-photon polymerization for extended refractive index range". Additive Manufacturing, czerwiec 2023, 103666. http://dx.doi.org/10.1016/j.addma.2023.103666.
Pełny tekst źródłaSamsonas, Danielius, Edvinas Skliutas, Arūnas Čiburys, Lukas Kontenis, Darius Gailevičius, Jonas Berzinš, Donatas Narbutis i in. "3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration". Nanophotonics, 13.01.2023. http://dx.doi.org/10.1515/nanoph-2022-0629.
Pełny tekst źródłaMaibohm, Christian, Oscar F. Silvestre, Jérôme Borme, Maina Sinou, Kevin Heggarty i Jana B. Nieder. "Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications". Scientific Reports 10, nr 1 (26.05.2020). http://dx.doi.org/10.1038/s41598-020-64955-9.
Pełny tekst źródłaXu, Borui, Wei Wei, Ping Tang, Jingzhu Shao, Xiangyu Zhao, Bo Chen, Shengxiang Dong i Chongzhao Wu. "A Multi‐foci Sparse‐Aperture Metalens". Advanced Science, 14.03.2024. http://dx.doi.org/10.1002/advs.202309648.
Pełny tekst źródłaZhao, Xiang-Yu, yuanyuan zhao, Hai-Chao Luo i Xuan-Ming Duan. "Tunable reflection coating to reduce exposure power threshold for interference-assisted two-photon polymerization lithography". Applied Physics Express, 21.08.2023. http://dx.doi.org/10.35848/1882-0786/acf273.
Pełny tekst źródłaWang, Xinger, Xuhao Fan, Yuncheng Liu, Ke Xu, Yining Zhou, Zexu Zhang, Fayu Chen i in. "3D Nanolithography via Holographic Multi‐Focus Metalens". Laser & Photonics Reviews, 22.06.2024. http://dx.doi.org/10.1002/lpor.202400181.
Pełny tekst źródłaSTANKEVIČIUS, Evaldas, Mangirdas MALINAUSKAS, Mindaugas GEDVILAS, Bogdan VOISIAT i Gediminas RAČIUKAITIS. "Fabrication of Periodic Micro-Structures by Multi-Photon Polymerization Using the Femtosecond Laser and Four-Beam Interference". Materials Science 17, nr 3 (16.09.2011). http://dx.doi.org/10.5755/j01.ms.17.3.587.
Pełny tekst źródłaZhang, Yuzhao, Haibo Yu, Xiaojie Zhang, Jianchen Zheng, Jingang Wang, Hongji Guo, Ye Qiu, Xiaoduo Wang, Lianqing Liu i Wen Jung Li. "A Novel Multifunctional Material for Constructing 3D Multi‐Response Structures Using Programmable Two‐Photon Laser Fabrication". Advanced Functional Materials, 10.03.2024. http://dx.doi.org/10.1002/adfm.202313922.
Pełny tekst źródła