Gotowa bibliografia na temat „Multi-photon polymerization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multi-photon polymerization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multi-photon polymerization"
Huang, Ying, Yusheng Zhang, Yuming Su, Zhenghao Zhai, Jiawei Chen i Cheng Wang. "Two-photon induced polymerization in a porous polymer film to create multi-layer structures". Chemical Communications 57, nr 37 (2021): 4516–19. http://dx.doi.org/10.1039/d1cc01383a.
Pełny tekst źródłaLin, Jieqiong, Peng Liu, Xian Jing, Mingming Lu, Kaixuan Wang i Jie Sun. "Stochastic Multi-Molecular Modeling Method of Organic-Modified Ceramics in Two-Photon Induced Photopolymerization". Materials 12, nr 23 (24.11.2019): 3876. http://dx.doi.org/10.3390/ma12233876.
Pełny tekst źródłaVerbitsky, Lior, Nir Waiskopf, Shlomo Magdassi i Uri Banin. "A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization". Nanoscale 11, nr 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.
Pełny tekst źródłaGlöckler, Felix, Florian Hausladen, Igor Alekseenko, Alexander Gröger, Giancarlo Pedrini i Daniel Claus. "Two-photon-polymerization enabled and enhanced multi-channel fibre switch". Engineering Research Express 3, nr 4 (11.11.2021): 045016. http://dx.doi.org/10.1088/2631-8695/ac34c5.
Pełny tekst źródłaPisanello, Marco, Di Zheng, Antonio Balena, Filippo Pisano, Massimo De Vittorio i Ferruccio Pisanello. "An open source three-mirror laser scanning holographic two-photon lithography system". PLOS ONE 17, nr 4 (15.04.2022): e0265678. http://dx.doi.org/10.1371/journal.pone.0265678.
Pełny tekst źródłaFilippidis, G., J. Catherine, M. Farsari, V. Zorba i C. Fotakis. "Construction of micron three-dimensional structures employing multi-photon polymerization". Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, nr 4 (grudzień 2005): 165–68. http://dx.doi.org/10.1243/17403499jnn48.
Pełny tekst źródłaZhao, Yuxia, Xue Li, Feipeng Wu i Xiangyun Fang. "Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives". Journal of Photochemistry and Photobiology A: Chemistry 177, nr 1 (styczeń 2006): 12–16. http://dx.doi.org/10.1016/j.jphotochem.2005.05.006.
Pełny tekst źródłaCui, Hai-Bo, Yan Li, Zhao-Pei Liu, Hong Yang i Qi-Huang Gong. "Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization". Applied Physics A 105, nr 4 (19.08.2011): 897–901. http://dx.doi.org/10.1007/s00339-011-6539-1.
Pełny tekst źródłaLee, W., S. A. Pruzinsky i P. V. Braun. "Multi-Photon Polymerization of Waveguide Structures Within Three-Dimensional Photonic Crystals". Advanced Materials 14, nr 4 (19.02.2002): 271–74. http://dx.doi.org/10.1002/1521-4095(20020219)14:4<271::aid-adma271>3.0.co;2-y.
Pełny tekst źródłaParkatzidis, Kostas, Maria Chatzinikolaidou, Eleftherios Koufakis, Maria Kaliva, Maria Farsari i Maria Vamvakaki. "Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity". Polymer Chemistry 11, nr 25 (2020): 4078–83. http://dx.doi.org/10.1039/d0py00281j.
Pełny tekst źródłaRozprawy doktorskie na temat "Multi-photon polymerization"
Müller, Jonathan Benedikt [Verfasser], i M. [Akademischer Betreuer] Wegener. "Exploring the Mechanisms of Three-Dimensional Direct Laser Writing by Multi-Photon Polymerization / Jonathan Benedikt Müller. Betreuer: M. Wegener". Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1072464608/34.
Pełny tekst źródłaOgor, Florie. "Microfabrication 3D par polymérisation multiphotonique massivement parallélisée pour des applications photoniques et biomédicales". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0413.
Pełny tekst źródłaSubmicron 3D structures are required in many fields (photonics, optics, biology, etc.). Fabricating such structures is difficult. Multiphoton polymerization is a suitable technique, but current fabrication times are long (one day to fabricate a mm3 structure), making industrial production costly and limiting the development of these structures. We present our contribution to the development and optimization of a massively parallelised multiphoton polymerization fabrication process for these structures. Two parallelization techniques are investigated at IMT Atlantique: one using a diffractive optical element and another, studied in this thesis, using a spatial light modulator in an imaging configuration and an ultra-sensitive TTA resist (Triplet-Triplet Annihilation), enabling writing with 1920 × 1080 beams in parallel. The use of multiple write beams can lead to resolution limiting proximity effects. We present our numerical simulation model of the photochemical process to understand, predict and correct these effects. We present possible improvements based on these simulations and the improved understanding of the optical system. The fabrication method we have developed enables us to fabricate structures with a resolution of around one micrometer in X,Y and several tens of micrometers in height on surfaces of the order of cm2 in just a few minutes. Finally, examples of applications in biology and ophthalmology, adapted to the photoplotter performance are presented
Liang, Wen Ping, i 梁文評. "Fabrication of two- and three-dimensional photonic crystals with defect by combining multiple-exposure of two-beam interference and multi-photon polymerization". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/39234243665121255414.
Pełny tekst źródła國立中正大學
光機電整合工程研究所
93
We demonstrated theoretically and experimentally a simple and easy method using multi-exposure of two-beam interference technique for fabrication of large-area two- and three-dimensional photonic crystals. Multi-exposure of two-beam interference pattern of a He-Cd laser or an argon laser into a negative SU8 or a positive AZ photopolymerizable photoresist is used to pattern square, rectangular, and hexagonal two- and three-dimensional periodic structures. The type of periodic structures depends on the orientation of photoresist with respect to the laser beam and the number of exposure. The lattice constants of three-dimensional periodic structures obtained by this technique are close in three dimensions, which is difficult to be obtained by one-exposure of multi-beam interference. In particular, we proposed a new ideal to fabricate two- and three-dimensional photonic crystals with well-defined defects by using the combination of interference and multi-photon polymerization techniques. Desired defects are introduced in the photonic crystals (fabricated by multi-exposure of two-beam interference technique) by tightly focused 100 femto-second duration pulses at 830nm-wavelength through an objective lens (numerical aperture = 0.85) to generate multi-photon absorption effect. A 6mm ´ 6mm photonic crystal with the lattice constant as small as 650nm embedding several kinds of defects, such as bending waveguides, numbers or letters defects, is obtained by employing this combination technique. Our new fabrication technique using multi-exposure of two-beam interference and its combination with multi-photon polymerization should be useful for mass production of photonic crystals and optoelectronics devices.
Streszczenia konferencji na temat "Multi-photon polymerization"
Tkaczyk, Tomasz S., Jiawei Lu i Haimu Cao. "Imaging Snapshot Spectrometers enabled with 2-Photon Polymerization based Additive Manufacturing". W Imaging Systems and Applications, IM1G.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im1g.7.
Pełny tekst źródłaShahriar, Shaimum, Javier J. Pazos, Robin Howell, Tyrone Morales, Desiree Aguilar, Stephen M. Kuebler i Jimmy Touma. "Morpho Butterfly-Inspired Sensors Created by Multi-Photon Polymerization". W 2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID). IEEE, 2022. http://dx.doi.org/10.1109/rapid54472.2022.9911536.
Pełny tekst źródłaGregory, Serge L. H. F., i Elijah Kannatey-Asibu. "Analysis of Voxel Size During Two-Photon Polymerization". W ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7374.
Pełny tekst źródłaObata, Kotaro, Jürgen Koch i Boris N. Chichkov. "Individually controlled multi-focus laser processing for two-photon polymerization". W SPIE LASE, redaktorzy Hiroyuki Niino, Michel Meunier, Bo Gu i Guido Hennig. SPIE, 2010. http://dx.doi.org/10.1117/12.842117.
Pełny tekst źródłaSomers, Paul, Xiaolong He i Xianfan Xu. "Numerical modeling of multi-photon polymerization by ultrafast laser (Conference Presentation)". W Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, redaktorzy Beat Neuenschwander, Gediminas Račiukaitis, Tetsuya Makimura i Costas P. Grigoropoulos. SPIE, 2018. http://dx.doi.org/10.1117/12.2290612.
Pełny tekst źródłaObata, Kotaro, Sven Passinger, Andreas Ostendorf i Boris Chichkov. "Multi-focus system for two-photon polymerization using phase modulated holographic technique". W ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061168.
Pełny tekst źródłaZhang, Qianyi, Antoine Boniface, Virendra Kumar Parashar i Christophe Moser. "Multi-Photon Polymerization with Upconversion Nanoparticles for Adaptive Feature-Size 3D Printing". W 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232766.
Pełny tekst źródłaTsunemitsu, Kaneto, Ryo Sano, Akira Watanabe, Hiroaki Onoe i Mitsuhiro Terakawa. "Microfabrication of double-network hydrogel with enhanced mechanical properties by multi-photon polymerization". W Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, redaktorzy Carlos Molpeceres, Aiko Narazaki i Jie Qiao. SPIE, 2021. http://dx.doi.org/10.1117/12.2576707.
Pełny tekst źródłaKurth, Daniel, i Alexander Verl. "Kinematic multi-axis two-photon polymerization printer concept for the manufacturing of micro optics". W 3D Printing for Lighting, redaktorzy Nadarajah Narendran, Samuel T. Mills i Govi Rao. SPIE, 2023. http://dx.doi.org/10.1117/12.2675889.
Pełny tekst źródłaObata, Kotaro, Francesc Caballero Lucas i Koji Sugioka. "Multi-photon polymerization by GHz burst mode femtosecond laser pulses for improvement of process resolution". W Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVII, redaktorzy Laura Gemini, Aiko Narazaki i Jie Qiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2610529.
Pełny tekst źródła