Gotowa bibliografia na temat „Multi-functional Polymers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Multi-functional Polymers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Multi-functional Polymers"
Figovsky, Oleg. "New Methods of Preparing Multi-Functional Nanocomposite Coatings". Advanced Materials Research 79-82 (sierpień 2009): 1979–82. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1979.
Pełny tekst źródłaHanumantharao i Rao. "Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering". Fibers 7, nr 7 (19.07.2019): 66. http://dx.doi.org/10.3390/fib7070066.
Pełny tekst źródłaLeng, Jin Song. "Multi-Functional Soft Smart Materials and their Applications". Advanced Materials Research 410 (listopad 2011): 25. http://dx.doi.org/10.4028/www.scientific.net/amr.410.25.
Pełny tekst źródłaNagarajan, M. K. "Multi-functional polyacrylate polymers in detergents". Journal of the American Oil Chemists’ Society 62, nr 5 (maj 1985): 949–55. http://dx.doi.org/10.1007/bf02541766.
Pełny tekst źródłaZafeiropoulou, Konstantina, Christina Kostagiannakopoulou, Anna Geitona, Xenia Tsilimigkra, George Sotiriadis i Vassilis Kostopoulos. "On the Multi-Functional Behavior of Graphene-Based Nano-Reinforced Polymers". Materials 14, nr 19 (5.10.2021): 5828. http://dx.doi.org/10.3390/ma14195828.
Pełny tekst źródłaEndo, Takeshi, i Toshikazu Takata. "Design and synthesis of multi-functional polymers." Kobunshi 37, nr 9 (1988): 662–65. http://dx.doi.org/10.1295/kobunshi.37.662.
Pełny tekst źródłaPouyan, Paria, Mariam Cherri i Rainer Haag. "Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications". Polymers 14, nr 13 (30.06.2022): 2684. http://dx.doi.org/10.3390/polym14132684.
Pełny tekst źródłaSheikhi, Mohammad Rauf, i Selim Gürgen. "Intelligent Polymers for Multi-Functional Applications: Mechanical and Electrical Aspects". Polymers 15, nr 12 (8.06.2023): 2620. http://dx.doi.org/10.3390/polym15122620.
Pełny tekst źródłaWen, WANG, LIN Mei-juan, LING Qi-dan i ZHANG Wen-gong. "Properties of Multi-functional Polymers Containing Terbium Complex". Acta Physico-Chimica Sinica 21, nr 08 (2005): 857–61. http://dx.doi.org/10.3866/pku.whxb20050807.
Pełny tekst źródłaWang, Huei-Hsiung, i Mei-Show Lin. "Poly(urea-urethane) polymers with multi-functional properties". Journal of Polymer Research 7, nr 2 (czerwiec 2000): 81–90. http://dx.doi.org/10.1007/s10965-006-0107-y.
Pełny tekst źródłaRozprawy doktorskie na temat "Multi-functional Polymers"
Michal, Brian. "Multi-Functional Stimuli-Responsive Polymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440396.
Pełny tekst źródłaAlexander, Shirin. "Multi functional polymers for drug delivery". Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566691.
Pełny tekst źródłaNair, Kamlesh Prabhakaran. "Multi-functionalized side-chain supramolecular polymers a methodology towards tunable functional materials /". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26505.
Pełny tekst źródłaCommittee Chair: Weck, Marcus; Committee Member: Breedveld, Victor; Committee Member: Bunz, Uwe; Committee Member: Liotta, Charles; Committee Member: Marder, Seth; Committee Member: Srinivasarao, Mohan. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Chen, Hong. "Development of multi-functional polymeric biomaterials". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1490706379312092.
Pełny tekst źródłaYu, Zitian. "The Preparation of Gold Nanoparticles for Multi-Functional Surface". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1428063689.
Pełny tekst źródłaYuan, Xuegang. "Cartilage Repair by Tissue Engineering: Multi-Functional Polymers as Scaffold Materials". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366820218.
Pełny tekst źródłaLiu, Qian. "Rational molecular design for multi-functional organic semiconducting materials". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208254/1/Qian_Liu_Thesis.pdf.
Pełny tekst źródłaPark, Soo Jeoung. "Photopolymerization-Induced Crystallization in Relation to Solid-Liquid Phase Diagrams of Blends of Blends of Poly(ethylene oxide)/Multi-functional Acrylate Monomers". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1218131827.
Pełny tekst źródłaZhang, Jiawei. "Multi-functional nanocomposites for the mechanical actuation and magnetoelectric conversion". Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00765011.
Pełny tekst źródłaSantese, Francesca. "Molecular modeling of multi-functional nanostructured materials and coatings". Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9974.
Pełny tekst źródłaMateriali e rivestimenti nanostrutturati possono potenzialmente apportare significativi cambiante nel campo della nanoscienze, nonché offrire una nuova generazione di materiali con caratteristiche e performance migliori. A questo proposito le tecniche computazionali diventano uno strumento fondamentale, in grado di ridurre notevolmente i tempi che vanno dall’idea iniziale al prodotto finito. La simulazione molecolare permette infatti la previsione delle proprietà macroscopiche prima che i materiali vengano preparati e caratterizzati sperimentalmente; consente inoltre una migliore comprensione dei fenomeni fisici su scala nanometrica. In questo lavoro di tesi sono presentati alcuni casi studio in cui vengono proposte diverse procedure computazionali per affrontare importanti aspetti come la bagnabilità della superficie, l’effetto della dimensione e della forma delle nanoparticelle e i loro meccanismi di aggregazione/dispersione. In questo contesto, si è dimostrata la vasta applicabilità della modellazione molecolare evidenziando quindi come questa rappresenti un potente strumento per comprendere e controllare le proprietà finali di materiali nanostrutturati, aprendo così la strada ad una progettazione in silico di nuovi materiali.
Nanostructured materials and coatings have the potential to change materials science significantly, as well as to provide a new generation of materials with a quantum improvement in properties. In this regard computational materials science becomes a powerful tool. It is able to rapidly reduce the time from concept to end product. Molecular simulation enables the prediction of properties of these new materials before preparation, processing, and experimental characterization, as well as a better understanding of the physical phenomena at the nanoscale level. In this thesis we present several study cases in which we propose different computational recipes to deal with different important topics such as surface wettability, effect of nanoparticles size and shape and nanoparticles aggregation/dispersion. In this context, we demonstrate the broad applicability of the molecular modelling and we ascertain that molecular simulation represent a powerful tool to understand and control the nanomaterials properties thus opening avenues for the in silico design of new materials.
XXVI Ciclo
1985
Książki na temat "Multi-functional Polymers"
Shahinpoor, Mohsen. Ionic Polymer Metal Composites Set: Smart Multi-Functional Materials and Artificial Muscles, Complete Set. Royal Society of Chemistry, The, 2015.
Znajdź pełny tekst źródłaShahinpoor, Mohsen. Ionic Polymer Metal Composites: Smart Multi-Functional Materials and Artificial Muscles, Volume 1. Royal Society of Chemistry, The, 2015.
Znajdź pełny tekst źródłaShahinpoor, Mohsen. Ionic Polymer Metal Composites Vol. 2: Smart Multi-Functional Materials and Artificial Muscles, Volume 2. Royal Society of Chemistry, The, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Multi-functional Polymers"
Argenal, Andres, David Matthews, Connor Murrell, Andrew H. Cannon, Mark Pankow i Garrett J. Pataky. "Carbon Fiber Reinforced Polymers with Carbon Nanotubes: Investigation of Interlaminar Strength". W Mechanics of Composite, Hybrid & Multi-functional Materials, Volume 5, 1–6. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17445-2_1.
Pełny tekst źródłaMerzkirch, Matthias, i Tim Foecke. "10° Off-Axis Tensile Testing of Carbon Fiber Reinforced Polymers Using Digital Image Correlation". W Mechanics of Composite and Multi-functional Materials, Volume 5, 55–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30028-9_8.
Pełny tekst źródłaHosur, Mahesh V., Merlin Theodore i Shaik Jeelani. "Effects of Functionalization on the Morphology, Cure Kinetics and Mechanical Behavior of Thermosetting Polymers". W IUTAM Symposium on Multi-Functional Material Structures and Systems, 143–52. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_15.
Pełny tekst źródłaSadasivuni, Kishor Kumar, Abdullahil Kafy, Lingdong Zhai, Hyun-U. Ko, Seong Cheol Mun i Jaehwan Kim. "Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators". W Graphene-Based Polymer Nanocomposites in Electronics, 67–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13875-6_4.
Pełny tekst źródłaZarras, P., A. Guenthner, D. J. Irvin, J. D. Stenger-Smith, S. Hawkins, L. Baldwin, R. Quintana i in. "Multi-Functional Electroactive Polymers (EAPs) as Alternatives for Cadmium Based Coatings". W ACS Symposium Series, 133–49. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1050.ch010.
Pełny tekst źródłaBhattacharyya, D., i R. J. Shields. "Modeling of Fibre Formation and Oxygen Permeability in Micro-fibrillar Polymer-Polymer Composites". W IUTAM Symposium on Multi-Functional Material Structures and Systems, 111–19. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_12.
Pełny tekst źródłaDeshmukh, Sujay, i Zoubeida Ounaies. "Active Single Walled Carbon Nanotube–Polymer Composites". W IUTAM Symposium on Multi-Functional Material Structures and Systems, 103–10. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_11.
Pełny tekst źródłaHu, Ning, Yoshifumi Karube i Hisao Fukunaga. "A Strain Sensor from a Polymer/Carbon Nanotube Nanocomposite". W IUTAM Symposium on Multi-Functional Material Structures and Systems, 77–86. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3771-8_8.
Pełny tekst źródłaWaldman, Laura J., Peter J. Hawrylak i Michael W. Keller. "Electromagnetic and Mechanical Behavior of Conductive Polymer Materials for Antennas". W Mechanics of Composite and Multi-functional Materials, Volume 5, 69–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30028-9_10.
Pełny tekst źródłaMoses, Daniel, Siamack Shirazi i Michael W. Keller. "Reversal of Scratches in Polymer Seals via Laminated Vascular Networks". W Mechanics of Composite and Multi-functional Materials, Volume 5, 81–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30028-9_12.
Pełny tekst źródłaStreszczenia konferencji na temat "Multi-functional Polymers"
Lee, Jae Gyeong, Sukyoung Won, Jeong Eun Park i Jeong Jae Wie. "Multi-Functional 3D Curvilinear Self-Folding of Glassy Polymers". W ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8407.
Pełny tekst źródłaMenaBrito, Rodrigo. "Multi-Functional Bio-Based Polymers in Laundry Detergents Prevent Staining and Graying". W Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.121.
Pełny tekst źródłaWang, Shu. "Design of Multi-Functional Conjugated Polymers for Sensing, Imaging and Biomedical Applications". W Nanophotonics, Nanoelectronics and Nanosensor. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/n3.2013.nsa4c.1.
Pełny tekst źródłaKelland, Malcolm A., i Janronel Pomicpic. "Multi-Functional Flow Assurance Inhibitors : Three Birds With One Stone?" W SPE International Conference on Oilfield Chemistry. SPE, 2023. http://dx.doi.org/10.2118/213817-ms.
Pełny tekst źródłaBejgerowski, Wojciech, Satyandra K. Gupta i Hugh A. Bruck. "A Modeling Approach for Simulating Heat Dissipation From Actuators and Electronic Components Embedded in Thermally Conducting Polymers". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87300.
Pełny tekst źródłaKawabe, Masanao, Hiroko Kitajima, Hiroyuki Yano, Takahiro Imamura, Masahiro Shimoda, Yasuji Shichijo i Isamu Akiba. "Syntheses of multi-functional aromatic copolymers (PDVs) with controlled molecular architectures and development of novel low dielectric loss materials from PDVs." W 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics. Polytronic 2007. IEEE, 2007. http://dx.doi.org/10.1109/polytr.2007.4339138.
Pełny tekst źródłaMcCutcheon, Jeff W. "Ultra-Pure Viscoelastic Damping Polymers and Associated Low Outgassing Materials". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1636.
Pełny tekst źródłaKalia, Karun, i Amir Ameli. "Interfacial Bond Strength of Various Rigid/Soft Multi-Materials Printed via Fused Filament Fabrication Process". W ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2298.
Pełny tekst źródłaGiaquinto, M., F. Gambino, P. Cicatiello, A. Micco, A. Aliberti, A. M. Cusano, A. Ricciardi i A. Cusano. "Multiresponsive smart cavity based lab-on-fiber optrode". W Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th1.2.
Pełny tekst źródłaOkolo, Chinyere, Ahmed Elmarakbi i Martin Birkett. "Investigating the Thermal and Mechanical Properties of Polyurethane Urea Nanocomposites for Subsea Applications". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95623.
Pełny tekst źródłaRaporty organizacyjne na temat "Multi-functional Polymers"
Perahia, Dvora, i Gary S. Grest. From Interfaces to Bulk: Experimental-Computational Studies Across Time and Length Scales of Multi-Functional Ionic Polymers. Office of Scientific and Technical Information (OSTI), styczeń 2017. http://dx.doi.org/10.2172/1340575.
Pełny tekst źródłaAdam J. Moule. Final Closeout report for grant FG36-08GO18018, titled: Functional Multi-Layer Solution Processable Polymer Solar Cells. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1047857.
Pełny tekst źródła