Artykuły w czasopismach na temat „Mtb Infection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mtb Infection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dempsey, Laurie A. "CD153 combats Mtb infection". Nature Immunology 19, nr 11 (17.10.2018): 1148. http://dx.doi.org/10.1038/s41590-018-0246-4.
Pełny tekst źródłaRosas Mejia, Oscar, Erin S. Gloag, Jianying Li, Marisa Ruane-Foster, Tiffany A. Claeys, Daniela Farkas, Shu-Hua Wang, Laszlo Farkas, Gang Xin i Richard T. Robinson. "Mice infected with Mycobacterium tuberculosis are resistant to acute disease caused by secondary infection with SARS-CoV-2". PLOS Pathogens 18, nr 3 (24.03.2022): e1010093. http://dx.doi.org/10.1371/journal.ppat.1010093.
Pełny tekst źródłaOlive, Andrew J., Clare M. Smith, Christina E. Baer, Jörn Coers i Christopher M. Sassetti. "Mycobacterium tuberculosis Evasion of Guanylate Binding Protein-Mediated Host Defense in Mice Requires the ESX1 Secretion System". International Journal of Molecular Sciences 24, nr 3 (2.02.2023): 2861. http://dx.doi.org/10.3390/ijms24032861.
Pełny tekst źródłaWong, Eileen A., Carolyn Kraus, Keith A. Reimann i JoAnne L. Flynn. "The role of IL-10 during early M. tuberculosis infection in a non-human primate model". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 123.5. http://dx.doi.org/10.4049/jimmunol.198.supp.123.5.
Pełny tekst źródłaKieswetter, Nathan S., Mumin Ozturk, Lerato Hlaka, Julius Ebua Chia, Ryan J. O. Nichol, Jasmine M. Cross, Leah M. C. McGee i in. "Intranasally administered S-MGB-364 displays antitubercular activity and modulates the host immune response to Mycobacterium tuberculosis infection". Journal of Antimicrobial Chemotherapy 77, nr 4 (25.01.2022): 1061–71. http://dx.doi.org/10.1093/jac/dkac001.
Pełny tekst źródłaWong, Kevin, James Nguyen, Lillie Blair, Marina Banjanin, Bunraj Grewal, Shane Bowman, Hailey Boyd i in. "Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection". Journal of Clinical Medicine 9, nr 11 (6.11.2020): 3575. http://dx.doi.org/10.3390/jcm9113575.
Pełny tekst źródłaBian, Yao, Shaobin Shang, Sharmila Shanmuganad, Sarah Siddiqui i Chyung-Ru Wang. "Qa-1b has antigen presentation and immunoregulatory roles during aerogenic Mycobacterium tuberculosis infection (P3296)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 134.1. http://dx.doi.org/10.4049/jimmunol.190.supp.134.1.
Pełny tekst źródłaHe, Xianbao, Jared J. Eddy, Karen R. Jacobson, Andrew J. Henderson i Luis M. Agosto. "Enhanced Human Immunodeficiency Virus-1 Replication in CD4+ T Cells Derived From Individuals With Latent Mycobacterium tuberculosis Infection". Journal of Infectious Diseases 222, nr 9 (16.05.2020): 1550–60. http://dx.doi.org/10.1093/infdis/jiaa257.
Pełny tekst źródłaMoriarty, Ryan V., Amy L. Ellis i Shelby L. O’Connor. "Monkeying around with MAIT Cells: Studying the Role of MAIT Cells in SIV and Mtb Co-Infection". Viruses 13, nr 5 (8.05.2021): 863. http://dx.doi.org/10.3390/v13050863.
Pełny tekst źródłaNusbaum, Rebecca, Matthew Huante, Putri Sutjita, Veronica Calderon, Sudhamathi Vijayakumar, Judith Aronson, Robert Hunter i in. "HIV-1 promotes neutrophil infiltration and lung damage in humanized mice co-infected with Mycobacterium tuberculosis (HUM1P.266)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 52.15. http://dx.doi.org/10.4049/jimmunol.194.supp.52.15.
Pełny tekst źródłaHarari, Alexandre, Virginie Rozot, Felicitas Bellutti Enders, Matthieu Perreau, Jesica Mazza Stalder, Laurent P. Nicod, Matthias Cavassini i in. "Dominant TNF-α Mycobacterium Tuberculosis-specific CD4 T-cell responses discriminate between latent infection and active disease (99.10)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 99.10. http://dx.doi.org/10.4049/jimmunol.186.supp.99.10.
Pełny tekst źródłaDunlap, Micah, Nicole Howard, Shibali Das, Mushtaq Ahmed, Oliver Prince, Javier Rangel-Moreno, Bruce Rosa, Makedonka Mitreva, Gwendalyn J. Randolph i Shabaana Khader. "C-C motif chemokine receptor 2 drives protective immunity by mediating alveolar macrophage localization in tuberculosis granulomas". Journal of Immunology 200, nr 1_Supplement (1.05.2018): 43.21. http://dx.doi.org/10.4049/jimmunol.200.supp.43.21.
Pełny tekst źródłaTocheny, Claire, Prakash Senbagavalli, Zhidong Hu, Keith Kauffman, Shunsuke Sakai, Bo Yan, Yanzhen Song i in. "Eosinophils actively participate in the host response to Mtb infection". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 131.9. http://dx.doi.org/10.4049/jimmunol.198.supp.131.9.
Pełny tekst źródłaPotian, Julius A., Wasiulla Rafi, Kamlesh Bhatt, Amanda McBride, William C. Gause i Padmini Salgame. "Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway". Journal of Experimental Medicine 208, nr 9 (8.08.2011): 1863–74. http://dx.doi.org/10.1084/jem.20091473.
Pełny tekst źródłaLarson, Erica C., Mark A. Rodgers, Amy L. Ellis, Cassaundra L. Ameel, Tonilynn M. Baranowski, Alexis J. Balgeman, Pauline A. Maiello, Shelby L. O’Connor i Charles A. Scanga. "Pre-existing SIV infection decreases cytokine responses by T cells in lung during the early stages of M. tuberculosis co-infection". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 190.36. http://dx.doi.org/10.4049/jimmunol.202.supp.190.36.
Pełny tekst źródłaLysenko, A. P., M. V. Kuchvalskiy, E. I. Yakobson, E. L. Krasnikova i A. N. Pritychenko. "DETECTION OF MARKERS OF LATENT TUBERCULOSIS INFECTION IN ULTRAPASTEURIZED MILK PRODUCED IN DIFFERENT COUNTRIES". Ecology and Animal World, nr 2 (11.12.2021): 13–25. http://dx.doi.org/10.47612/2224-1647-2021-2-13-25.
Pełny tekst źródłaRamon-Luing, Lucero A., Claudia Carranza, Norma A. Téllez-Navarrete, Karen Medina-Quero, Yolanda Gonzalez, Martha Torres i Leslie Chavez-Galan. "Mycobacterium tuberculosis H37Rv Strain Increases the Frequency of CD3+TCR+ Macrophages and Affects Their Phenotype, but Not Their Migration Ability". International Journal of Molecular Sciences 23, nr 1 (28.12.2021): 329. http://dx.doi.org/10.3390/ijms23010329.
Pełny tekst źródłaForeman, Taylor W., Michelle Sallin, Keith D. Kauffman, Catherine Riou, Elsa Du Bruyn, Shunsuke Sakai, Stella Hoft i in. "Host Resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 190.78. http://dx.doi.org/10.4049/jimmunol.202.supp.190.78.
Pełny tekst źródłaCampo, Monica, Chetan Seshadri, Catherine M. Stein, Glenna Peterson, Richard D. Wells, Harriet Mayanja-Kizza, W. Henry Boom i Thomas Hawn. "The role of histone deacetylases in the innate immune response to Mycobacterium tuberculosis infection". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 126.15. http://dx.doi.org/10.4049/jimmunol.196.supp.126.15.
Pełny tekst źródłaScott-Browne, James P., Shahin Shafiani, Glady's Tucker-Heard, Kumiko Ishida-Tsubota, Jason D. Fontenot, Alexander Y. Rudensky, Michael J. Bevan i Kevin B. Urdahl. "Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis". Journal of Experimental Medicine 204, nr 9 (20.08.2007): 2159–69. http://dx.doi.org/10.1084/jem.20062105.
Pełny tekst źródłaJiang, Yao, Jia-Xuan Zhang i Rong Liu. "Systematic comparison of differential expression networks in MTB mono-, HIV mono- and MTB/HIV co-infections for drug repurposing". PLOS Computational Biology 18, nr 12 (19.12.2022): e1010744. http://dx.doi.org/10.1371/journal.pcbi.1010744.
Pełny tekst źródłaKothari, Hema, Ramakrishna Vankayalapati, Padmaja Paidipally, L. Vijaya Mohan Rao i Usha R. Pendurthi. "Mycobacterium Tuberculosis infection and Tissue Factor Expression in Macrophages". Blood 118, nr 21 (18.11.2011): 1198. http://dx.doi.org/10.1182/blood.v118.21.1198.1198.
Pełny tekst źródłaGideon, Hannah, Philana Lin i JoAnne Flynn. "T cell cytokine profile of early tuberculosis infection and disease in Cynomolgus macaque model (P3335)". Journal of Immunology 190, nr 1_Supplement (1.05.2013): 134.21. http://dx.doi.org/10.4049/jimmunol.190.supp.134.21.
Pełny tekst źródłaNaik, Sumanta Kumar, Michael Nehls, Yassin Mreyoud, Rachel L. Kinsella, Asya Smirnov, Chanchal S. Chowdhury, Sam Mckee, Neha Dubey, Darren Kreamalmeyer i Christina L. Stallings. "Determining the mechanistic basis for Irgm1 mediated control of Mycobacterium tuberculosisinfection." Journal of Immunology 210, nr 1_Supplement (1.05.2023): 81.01. http://dx.doi.org/10.4049/jimmunol.210.supp.81.01.
Pełny tekst źródłaPouget, Marion, Anna K. Coussens, Alessandra Ruggiero, Anastasia Koch, Jordan Thomas, Gurdyal S. Besra, Robert J. Wilkinson, Apoorva Bhatt, Georgios Pollakis i William A. Paxton. "Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis- and trans-Infections". International Journal of Molecular Sciences 22, nr 4 (16.02.2021): 1945. http://dx.doi.org/10.3390/ijms22041945.
Pełny tekst źródłaGindeh, Awa, Simon Donkor i Olumuyiwa Owolabi. "PO 8383 THE ROLE OF PLASMA B CELLS IN MYCOBACTERIUM TUBERCULOSIS INFECTION AND DISEASE". BMJ Global Health 4, Suppl 3 (kwiecień 2019): A31.2—A31. http://dx.doi.org/10.1136/bmjgh-2019-edc.80.
Pełny tekst źródłaMAGOMBEDZE, GESHAM, WINSTON GARIRA i EDDIE MWENJE. "IN-VIVOMATHEMATICAL STUDY OF CO-INFECTION DYNAMICS OF HIV-1 ANDMYCOBACTERIUM TUBERCULOSIS". Journal of Biological Systems 16, nr 03 (wrzesień 2008): 357–94. http://dx.doi.org/10.1142/s0218339008002551.
Pełny tekst źródłaMartinez-Martinez, Yazmin Berenice, Matthew B. Huante, Megan Files, Benjamin B. Gelman, Mark Endsley i Janice J. Endsley. "HIV compromises Th17 and Th22 immunity in a humanized mouse model of Tuberculosis and HIV co-infection". Journal of Immunology 208, nr 1_Supplement (1.05.2022): 58.16. http://dx.doi.org/10.4049/jimmunol.208.supp.58.16.
Pełny tekst źródłaLee, Junghwan, Ji-Ae Choi, Soo-Na Cho, Sang-Hun Son i Chang-Hwa Song. "Mitofusin 2-Deficiency Suppresses Mycobacterium tuberculosis Survival in Macrophages". Cells 8, nr 11 (30.10.2019): 1355. http://dx.doi.org/10.3390/cells8111355.
Pełny tekst źródłaGanchua, Sharie Keanne C., Anthony M. Cadena, Forrest F. Hopkins, Sarah Fortune i JoAnne L. Flynn. "Drug treatment of tuberculosis diminishes but does not abolish the protection against secondary M. tuberculosis challenge". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 190.33. http://dx.doi.org/10.4049/jimmunol.202.supp.190.33.
Pełny tekst źródłaGorna, Alina E., Richard P. Bowater i Jaroslaw Dziadek. "DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection". Clinical Science 119, nr 5 (25.05.2010): 187–202. http://dx.doi.org/10.1042/cs20100041.
Pełny tekst źródłaSimpson, Allison, Taylor W. Foreman, Namita Rout i Deepak Kaushal. "The Characterization of Nonclassical T cells and their Responses during Mtb Infection". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 200.13. http://dx.doi.org/10.4049/jimmunol.196.supp.200.13.
Pełny tekst źródłaHlaka, Lerato, Mumin Ozturk, Julius E. Chia, Shelby-Sara Jones, Shandre Pillay, Sibongiseni K. L. Poswayo, Thabo Mpotje i in. "IL-4i1 Regulation of Immune Protection During Mycobacterium tuberculosis Infection". Journal of Infectious Diseases 224, nr 12 (5.11.2021): 2170–80. http://dx.doi.org/10.1093/infdis/jiab558.
Pełny tekst źródłaTisthammer, Kaho H., Christopher Kline, Tara Rutledge, Collin R. Diedrich, Sergio Ita, Philana Ling Lin, Zandrea Ambrose i Pleuni S. Pennings. "SIV Evolutionary Dynamics in Cynomolgus Macaques during SIV-Mycobacterium tuberculosis Co-Infection". Viruses 14, nr 1 (29.12.2021): 48. http://dx.doi.org/10.3390/v14010048.
Pełny tekst źródłaWaters, Robyn, Mthawelanga Ndengane, Melissa-Rose Abrahams, Collin R. Diedrich, Robert J. Wilkinson i Anna K. Coussens. "The Mtb-HIV syndemic interaction: why treating M. tuberculosis infection may be crucial for HIV-1 eradication". Future Virology 15, nr 2 (luty 2020): 101–26. http://dx.doi.org/10.2217/fvl-2019-0069.
Pełny tekst źródłaSia, Jonathan Kevin, Maria Georgieva i Jyothi Rengarajan. "Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions betweenMycobacterium tuberculosisand Innate Immune Cells". Journal of Immunology Research 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/747543.
Pełny tekst źródłaGopalakrishnan, Archana, Jillian Dietzold i Padmini Salgame. "Induction of memory immunity to Mycobacterium tuberculosis is independent of Toll-like receptor 9 signaling (IRC9P.706)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 191.7. http://dx.doi.org/10.4049/jimmunol.192.supp.191.7.
Pełny tekst źródłaFilinyuk, O. V., A. S. Alliluev, D. E. Аmichba, P. N. Golubchikov, Yu S. Popelo i M. N. Dobkina. "HIV infection and multiple drug resistant tuberculosis: the frequency of co-infection and treatment efficacy". Tuberculosis and Lung Diseases 99, nr 2 (10.03.2021): 45–51. http://dx.doi.org/10.21292/2075-1230-2021-99-2-45-51.
Pełny tekst źródłaHuynh, Jeremy P., Chih-Chung Lin, Jacqueline M. Kimmey, Nicholas N. Jarjour, Elizabeth A. Schwarzkopf, Tara R. Bradstreet, Irina Shchukina i in. "Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection". Journal of Experimental Medicine 215, nr 7 (17.05.2018): 1823–38. http://dx.doi.org/10.1084/jem.20171704.
Pełny tekst źródłaLIN, S. H., C. C. LAI, S. H. HUANG, C. C. HUNG i P. R. HSUEH. "Mycobacterial bone marrow infections at a medical centre in Taiwan, 2001–2009". Epidemiology and Infection 142, nr 7 (29.10.2013): 1524–32. http://dx.doi.org/10.1017/s0950268813002707.
Pełny tekst źródłaThandi, Ramya Sivangala, Rajesh kumar Radhakrishnan, Deepak Tripathi, Padmaja Paidipally i Ramakrishna Vankayalapati. "Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 85.16. http://dx.doi.org/10.4049/jimmunol.204.supp.85.16.
Pełny tekst źródłaMazahery, Claire, Steven Chirieleison, Supriya Shukla, Sophia Onwuzulike, Mukesh Jain, W. Henry Boom, Derek W. Abbott i Clifford V. Harding. "Macrophage Krüppel-like factor 4 regulates response to Mycobacterium tuberculosis infection". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 148.22. http://dx.doi.org/10.4049/jimmunol.198.supp.148.22.
Pełny tekst źródłaMejia, Oscar Rosas, Erin S. Gloag, Jianying Li, Marisa Ruane-Foster, Tiffany A. Claeys, Daniela Farkas, Laszlo Farkas, Gang Xin i Richard T. Robinson. "Mice infected with Mycobacterium tuberculosis are resistant to secondary infection with SARS-CoV-2". Journal of Immunology 208, nr 1_Supplement (1.05.2022): 58.15. http://dx.doi.org/10.4049/jimmunol.208.supp.58.15.
Pełny tekst źródłaDiedrich, Collin R., Tara Rutledge, Pauline Maiello, Tonilynn Baranowski, Alex White, H. Jacob Borish, Paul Karell i in. "SIV and CD4 depletion distinctly reactivate latent Mycobacterium. tuberculosis infection". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 225.35. http://dx.doi.org/10.4049/jimmunol.204.supp.225.35.
Pełny tekst źródłaTakhelmayum, Umesh, Namjubou Daimai, Kanchana Laishram, Nikhil Juneja, M. L. Yogananda i Deepa Longjam. "A case of postoperative tubercular spondylitis following microdiscectomy for lumbar disc herniation". Surgical Neurology International 12 (7.06.2021): 265. http://dx.doi.org/10.25259/sni_469_2021.
Pełny tekst źródłaJung, Yu-Jin, Lynn Ryan, Ronald LaCourse i Robert J. North. "Properties and protective value of the secondary versus primary T helper type 1 response to airborne Mycobacterium tuberculosis infection in mice". Journal of Experimental Medicine 201, nr 12 (13.06.2005): 1915–24. http://dx.doi.org/10.1084/jem.20050265.
Pełny tekst źródłaLysenko, A. P., M. V. Kuchvalski, E. I. Yakobson, E. L. Krasnikova, A. I. Poloz i N. Y. Anikevich. "NEOPLASTIC DISEASE OF SMALL ANIMALS AND LATENT TUBERCULOSIS INFECTION". Ecology and Animal World, nr 1 (30.05.2022): 20–32. http://dx.doi.org/10.47612/2224-1647-2022-1-20-32.
Pełny tekst źródłaShafiani, Shahin, Sukhraj Kaur, Imran Siddiqui, Crystal Dinh i Kevin Urdahl. "Parallel expansion of natural Foxp3+ regulatory T cells and effector CD4+ T cells recognizing the same Mycobacterium tuberculosis epitope (99.4)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 99.4. http://dx.doi.org/10.4049/jimmunol.186.supp.99.4.
Pełny tekst źródłabhatt, kamlesh, Zhugong Liu, W. C. Gause i P. Salgame. "Nippostrongylus brasiliensis infection modulates Mycobacterium tuberculosis induced Th1 response (43.45)". Journal of Immunology 178, nr 1_Supplement (1.04.2007): S45. http://dx.doi.org/10.4049/jimmunol.178.supp.43.45.
Pełny tekst źródłaKonstantynovska, Olha, Mariia Rekrotchuk, Ivan Hrek, Anton Rohozhyn, Nataliia Rudova, Petro Poteiko, Anton Gerilovych, Eric Bortz i Oleksii Solodiankin. "Severe Clinical Outcomes of Tuberculosis in Kharkiv Region, Ukraine, Are Associated with Beijing Strains of Mycobacterium tuberculosis". Pathogens 8, nr 2 (10.06.2019): 75. http://dx.doi.org/10.3390/pathogens8020075.
Pełny tekst źródła