Artykuły w czasopismach na temat „MRI IMAGE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „MRI IMAGE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Huixian, Hailong Li, Jonathan R. Dillman, Nehal A. Parikh i Lili He. "Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks". Diagnostics 12, nr 4 (26.03.2022): 816. http://dx.doi.org/10.3390/diagnostics12040816.
Pełny tekst źródłaYang, Huan, Pengjiang Qian i Chao Fan. "An Indirect Multimodal Image Registration and Completion Method Guided by Image Synthesis". Computational and Mathematical Methods in Medicine 2020 (30.06.2020): 1–10. http://dx.doi.org/10.1155/2020/2684851.
Pełny tekst źródłaDestyningtias, Budiani, Andi Kurniawan Nugroho i Sri Heranurweni. "Analisa Citra Medis Pada Pasien Stroke dengan Metoda Peregangan Kontras Berbasis ImageJ". eLEKTRIKA 10, nr 1 (19.06.2019): 15. http://dx.doi.org/10.26623/elektrika.v10i1.1105.
Pełny tekst źródłaBellam, Kiranmai, N. Krishnaraj, T. Jayasankar, N. B. Prakash i G. R. Hemalakshmi. "Adaptive Multimodal Image Fusion with a Deep Pyramidal Residual Learning Network". Journal of Medical Imaging and Health Informatics 11, nr 8 (1.08.2021): 2135–43. http://dx.doi.org/10.1166/jmihi.2021.3763.
Pełny tekst źródłaSchramm, Georg, i Claes Nøhr Ladefoged. "Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI". BJR|Open 1, nr 1 (listopad 2019): 20190033. http://dx.doi.org/10.1259/bjro.20190033.
Pełny tekst źródła., Swapnali Matkar. "IMAGE SEGMENTATION METHODS FOR BRAIN MRI IMAGES". International Journal of Research in Engineering and Technology 04, nr 03 (25.03.2015): 263–66. http://dx.doi.org/10.15623/ijret.2015.0403045.
Pełny tekst źródłaSingh, Ram, i Lakhwinder Kaur. "Noise-residue learning convolutional network model for magnetic resonance image enhancement". Journal of Physics: Conference Series 2089, nr 1 (1.11.2021): 012029. http://dx.doi.org/10.1088/1742-6596/2089/1/012029.
Pełny tekst źródłaYan, Rong. "The Value of Convolutional-Neural-Network-Algorithm-Based Magnetic Resonance Imaging in the Diagnosis of Sports Knee Osteoarthropathy". Scientific Programming 2021 (2.07.2021): 1–11. http://dx.doi.org/10.1155/2021/2803857.
Pełny tekst źródłaOdusami, Modupe, Rytis Maskeliūnas i Robertas Damaševičius. "Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer’s Disease Classification". Brain Sciences 13, nr 7 (8.07.2023): 1045. http://dx.doi.org/10.3390/brainsci13071045.
Pełny tekst źródłaWu, Hongliang, Guocheng Chen, Guibao Zhang i Minghua Dai. "Application of Multimodal Fusion Technology in Image Analysis of Pretreatment Examination of Patients with Spinal Injury". Journal of Healthcare Engineering 2022 (12.04.2022): 1–10. http://dx.doi.org/10.1155/2022/4326638.
Pełny tekst źródłaLiu, Huanyu, Jiaqi Liu, Junbao Li, Jeng-Shyang Pan i Xiaqiong Yu. "DL-MRI: A Unified Framework of Deep Learning-Based MRI Super Resolution". Journal of Healthcare Engineering 2021 (9.04.2021): 1–9. http://dx.doi.org/10.1155/2021/5594649.
Pełny tekst źródłaRajalakshmi, N., K. Narayanan i P. Amudhavalli. "Wavelet-Based Weighted Median Filter For Image Denoising Of MRI Brain Images". Indonesian Journal of Electrical Engineering and Computer Science 10, nr 1 (1.04.2018): 201. http://dx.doi.org/10.11591/ijeecs.v10.i1.pp201-206.
Pełny tekst źródłaXie, Xiaoxiao, Zhen Li, Lu Bai, Ri Zhou, Canfeng Li, Xiaocheng Jiang, Jianwei Zuo i Yulong Qi. "Deep Learning-Based MRI in Diagnosis of Fracture of Tibial Plateau Combined with Meniscus Injury". Scientific Programming 2021 (20.12.2021): 1–8. http://dx.doi.org/10.1155/2021/9935910.
Pełny tekst źródłaLiang, Yingbo, i Jian Fu. "Watershed Algorithm for Medical Image Segmentation Based on Morphology and Total Variation Model". International Journal of Pattern Recognition and Artificial Intelligence 33, nr 05 (8.04.2019): 1954019. http://dx.doi.org/10.1142/s0218001419540193.
Pełny tekst źródła., Gautam. "Super Resolution MRI Using Generative Adversarial Networks". International Journal for Research in Applied Science and Engineering Technology 9, nr VII (31.07.2021): 3896–905. http://dx.doi.org/10.22214/ijraset.2021.37237.
Pełny tekst źródłaDong, Jie, Yueying Zhang, Yun Meng, Tingxiao Yang, Wei Ma i Huixin Wu. "Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks". Stem Cells International 2022 (17.10.2022): 1–9. http://dx.doi.org/10.1155/2022/8619690.
Pełny tekst źródłaSun, Lifang, Xi Hu, Yutao Liu i Hengyu Cai. "Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors". Contrast Media & Molecular Imaging 2021 (30.08.2021): 1–8. http://dx.doi.org/10.1155/2021/1104611.
Pełny tekst źródłaMin, Liang, Yi Gu, Rui Xue, Yi Ren i Bo Gao. "Composite MRI Task Construction from CT Images based on Deep Convolution Neural Network". Journal of Imaging Science and Technology 65, nr 3 (1.05.2021): 30404–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2021.65.3.030404.
Pełny tekst źródłaLee, Giljae, Hwunjae Lee i Gyehwan Jin. "Analysis of Fitting Degree of MRI and PET Images in Simultaneous MRPET Images by Machine Learning Neural Networks". ScholarGen Publishers 3, nr 1 (28.12.2020): 43–61. http://dx.doi.org/10.31916/sjmi2020-01-05.
Pełny tekst źródłaVeress, Alexander I., Gregory Klein i Grant T. Gullberg. "A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation". International Journal of Biomedical Imaging 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/728624.
Pełny tekst źródłaZhang, Weilan, Jingyi Zhu, Xiaohan Xu i Guoguang Fan. "Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI". Acta Radiologica 61, nr 4 (14.09.2019): 461–70. http://dx.doi.org/10.1177/0284185119871670.
Pełny tekst źródłaWei, Hui, Baolong Lv, Feng Liu, Haojun Tang, Fangfang Gou i Jia Wu. "A Tumor MRI Image Segmentation Framework Based on Class-Correlation Pattern Aggregation in Medical Decision-Making System". Mathematics 11, nr 5 (28.02.2023): 1187. http://dx.doi.org/10.3390/math11051187.
Pełny tekst źródłaDjan, Igor, Borislava Petrovic, Marko Erak, Ivan Nikolic i Silvija Lucic. "Radiotherapy treatment planning: Benefits of CT-MR image registration and fusion in tumor volume delineation". Vojnosanitetski pregled 70, nr 8 (2013): 735–39. http://dx.doi.org/10.2298/vsp110404001d.
Pełny tekst źródłaDavid S, Alex, Almas Begum i Ravikumar S. "Content clustering for MRI Image compression using PPAM". International Journal of Engineering & Technology 7, nr 1.7 (5.02.2018): 126. http://dx.doi.org/10.14419/ijet.v7i1.7.10631.
Pełny tekst źródłaShwetha, V., C. H. Renu Madhavi i Kumar M. Nagendra. "Classification of Brain Tumors Using Hybridized Convolutional Neural Network in Brain MRI images". International Journal of Circuits, Systems and Signal Processing 16 (14.01.2022): 561–70. http://dx.doi.org/10.46300/9106.2022.16.70.
Pełny tekst źródłaKumar, L. Ravi, K. G. S. Venkatesan i S.Ravichandran. "Cloud-enabled Internet of Things Medical Image Processing Compressed Sensing Reconstruction". International Journal of Scientific Methods in Intelligence Engineering Networks 01, nr 04 (2023): 11–21. http://dx.doi.org/10.58599/ijsmien.2023.1402.
Pełny tekst źródłaTaime, Abderazzak, Aziz Khamjane, Jamal Riffi i Hamid Tairi. "Improving the accuracy of the PET/MRI tridimensional multimodal rigid image registration based on the FATEMD". Radioelectronic and Computer Systems, nr 1 (7.03.2023): 122–33. http://dx.doi.org/10.32620/reks.2023.1.10.
Pełny tekst źródłaDing, Wei Li, Feng Jiang i Jia Qing Yan. "Automatic Segmentation of the Skull in MRI Sequences Using Level Set Method". Applied Mechanics and Materials 58-60 (czerwiec 2011): 2370–75. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.2370.
Pełny tekst źródłaKortepeter, Mark G. "MRI: My Resonant Image". Annals of Internal Medicine 115, nr 9 (1.11.1991): 749. http://dx.doi.org/10.7326/0003-4819-115-9-749.
Pełny tekst źródłaVitone, Louis, Abraham Joel, Andrew Masters i Simon Lea. "Obturator Hernia – MRI Image". Indian Journal of Surgery 75, nr 4 (18.09.2012): 322. http://dx.doi.org/10.1007/s12262-012-0735-x.
Pełny tekst źródłaHartshorne, M. F., L. K. Arata, B. B. Roberts, P. W. Wiest i J. A. Sanders. "MRI/SPECT IMAGE FUSION". CLINICAL NUCLEAR MEDICINE 22, nr 3 (marzec 1997): 199. http://dx.doi.org/10.1097/00003072-199703000-00022.
Pełny tekst źródłaTaie, Shereen A., i Wafaa Ghonaim. "A new model for early diagnosis of alzheimer's disease based on BAT-SVM classifier". Bulletin of Electrical Engineering and Informatics 10, nr 2 (1.04.2021): 759–66. http://dx.doi.org/10.11591/eei.v10i2.2714.
Pełny tekst źródłaAhmed, Ahmed Shihab, i Hussein Ali Salah. "The IoT and registration of MRI brain diagnosis based on genetic algorithm and convolutional neural network". Indonesian Journal of Electrical Engineering and Computer Science 25, nr 1 (1.01.2022): 273. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp273-280.
Pełny tekst źródłaMurugachandravel, J., i S. Anand. "Enhancing MRI Brain Images Using Contourlet Transform and Adaptive Histogram Equalization". Journal of Medical Imaging and Health Informatics 11, nr 12 (1.12.2021): 3024–27. http://dx.doi.org/10.1166/jmihi.2021.3906.
Pełny tekst źródłaYOUSIF, AHMED, Zaid Bin Omar i Usman Ullah Sheikh. "A Survey on Multi-Scale Medical images Fusion Techniques: Brain Diseases". Journal of Biomedical Engineering and Medical Imaging 7, nr 1 (28.02.2020): 18–38. http://dx.doi.org/10.14738/jbemi.71.7415.
Pełny tekst źródłaNandhagopal, N., C. Jaichander i R. Ponniwalavan. "Image Classification using MRI Images in Brain Tumor". Asian Journal of Research in Social Sciences and Humanities 6, cs1 (2016): 422. http://dx.doi.org/10.5958/2249-7315.2016.00974.6.
Pełny tekst źródłaHata, Junichi. "3. Introduction to MRI Image Analysis Using ImageJ". Japanese Journal of Radiological Technology 75, nr 1 (2019): 89–94. http://dx.doi.org/10.6009/jjrt.2019_jsrt_75.1.89.
Pełny tekst źródłaJai Shankar, B., K. Murugan, A. Obulesu, S. Finney Daniel Shadrach i R. Anitha. "MRI Image Segmentation Using Bat Optimization Algorithm with Fuzzy C Means (BOA-FCM) Clustering". Journal of Medical Imaging and Health Informatics 11, nr 3 (1.03.2021): 661–66. http://dx.doi.org/10.1166/jmihi.2021.3365.
Pełny tekst źródłaFu, Qimao, Chuizhi Huang, Yan Chen, Nailong Jia, Jinghui Huang i Changkun Lin. "Magnetic Resonance Imaging Image under Low-Rank Matrix Denoising Algorithm in the Diagnosis and Evaluation of Tibial Plateau Fracture Combined with Meniscus Injury". Scientific Programming 2021 (24.11.2021): 1–9. http://dx.doi.org/10.1155/2021/6329020.
Pełny tekst źródłaPeni Agustin Tjahyaningtijas, Hapsari. "Brain Tumor Image Segmentation in MRI Image". IOP Conference Series: Materials Science and Engineering 336 (kwiecień 2018): 012012. http://dx.doi.org/10.1088/1757-899x/336/1/012012.
Pełny tekst źródłaBasir, Otman, i Kalifa Shantta. "Automatic MRI Brain Tumor Segmentation Techniques: A Survey". IRA-International Journal of Applied Sciences (ISSN 2455-4499) 16, nr 2 (20.04.2021): 25. http://dx.doi.org/10.21013/jas.v16.n2.p2.
Pełny tekst źródłaJacobson, Geraldine, Gideon Zamba, Vicki Betts, M. Muruganandham i Joni Buechler-Price. "Image-Based Treatment Planning of the Post-Lumpectomy Breast Utilizing CT and 3TMRI". International Journal of Breast Cancer 2011 (2011): 1–5. http://dx.doi.org/10.4061/2011/246265.
Pełny tekst źródłaMishra, Susmita, M. Prakash, A. Hafsa i G. Anchana. "Anfis to Detect Brain Tumor Using MRI". International Journal of Engineering & Technology 7, nr 3.27 (15.08.2018): 209. http://dx.doi.org/10.14419/ijet.v7i3.27.17763.
Pełny tekst źródłaLiu, Hujun, Hui Gao i Fei Jia. "The Value of Convolutional Neural Network-Based Magnetic Resonance Imaging Image Segmentation Algorithm to Guide Targeted Controlled Release of Doxorubicin Nanopreparation". Contrast Media & Molecular Imaging 2021 (26.07.2021): 1–10. http://dx.doi.org/10.1155/2021/9032017.
Pełny tekst źródłaHoffmann, Nico, Florian Weidner, Peter Urban, Tobias Meyer, Christian Schnabel, Yordan Radev, Gabriele Schackert i in. "Framework for 2D-3D image fusion of infrared thermography with preoperative MRI". Biomedical Engineering / Biomedizinische Technik 62, nr 6 (27.11.2017): 599–607. http://dx.doi.org/10.1515/bmt-2016-0075.
Pełny tekst źródłaAndotra, Abhinav Singh, i Sandeep Sharma. "MRI Image Enhancement: Optimized Filtering Mechanism for Achieving High Accuracy in Diagnose Process". Asian Journal of Computer Science and Technology 7, nr 1 (5.05.2018): 66–70. http://dx.doi.org/10.51983/ajcst-2018.7.1.1827.
Pełny tekst źródłaTheocharis, Stefanos, Eleftherios P. Pappas, Ioannis Seimenis, Panagiotis Kouris, Dimitrios Dellios, Georgios Kollias i Pantelis Karaiskos. "Geometric distortion assessment in 3T MR images used for treatment planning in cranial Stereotactic Radiosurgery and Radiotherapy". PLOS ONE 17, nr 5 (23.05.2022): e0268925. http://dx.doi.org/10.1371/journal.pone.0268925.
Pełny tekst źródłaLiu, Yawen, Haijun Niu, Pengling Ren, Jialiang Ren, Xuan Wei, Wenjuan Liu, Heyu Ding i in. "Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network". Physics in Medicine & Biology 67, nr 2 (17.01.2022): 025002. http://dx.doi.org/10.1088/1361-6560/ac46dd.
Pełny tekst źródłaDe, Arunava, Anup Kumar Bhattacharjee, Chandan Kumar Chanda i Bansibadan Maji. "Entropy Maximization, Stationary Wavelet and DCT Based Segmentation, De-Noising and Progressive Transmission Technique for Diseased MRI Images". Applied Mechanics and Materials 197 (wrzesień 2012): 229–34. http://dx.doi.org/10.4028/www.scientific.net/amm.197.229.
Pełny tekst źródłaPitkänen, Johanna, Juha Koikkalainen, Tuomas Nieminen, Ivan Marinkovic, Sami Curtze, Gerli Sibolt, Hanna Jokinen i in. "Evaluating severity of white matter lesions from computed tomography images with convolutional neural network". Neuroradiology 62, nr 10 (13.04.2020): 1257–63. http://dx.doi.org/10.1007/s00234-020-02410-2.
Pełny tekst źródła