Gotowa bibliografia na temat „MRI IMAGE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „MRI IMAGE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "MRI IMAGE"
Zhang, Huixian, Hailong Li, Jonathan R. Dillman, Nehal A. Parikh i Lili He. "Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks". Diagnostics 12, nr 4 (26.03.2022): 816. http://dx.doi.org/10.3390/diagnostics12040816.
Pełny tekst źródłaYang, Huan, Pengjiang Qian i Chao Fan. "An Indirect Multimodal Image Registration and Completion Method Guided by Image Synthesis". Computational and Mathematical Methods in Medicine 2020 (30.06.2020): 1–10. http://dx.doi.org/10.1155/2020/2684851.
Pełny tekst źródłaDestyningtias, Budiani, Andi Kurniawan Nugroho i Sri Heranurweni. "Analisa Citra Medis Pada Pasien Stroke dengan Metoda Peregangan Kontras Berbasis ImageJ". eLEKTRIKA 10, nr 1 (19.06.2019): 15. http://dx.doi.org/10.26623/elektrika.v10i1.1105.
Pełny tekst źródłaBellam, Kiranmai, N. Krishnaraj, T. Jayasankar, N. B. Prakash i G. R. Hemalakshmi. "Adaptive Multimodal Image Fusion with a Deep Pyramidal Residual Learning Network". Journal of Medical Imaging and Health Informatics 11, nr 8 (1.08.2021): 2135–43. http://dx.doi.org/10.1166/jmihi.2021.3763.
Pełny tekst źródłaSchramm, Georg, i Claes Nøhr Ladefoged. "Metal artifact correction strategies in MRI-based attenuation correction in PET/MRI". BJR|Open 1, nr 1 (listopad 2019): 20190033. http://dx.doi.org/10.1259/bjro.20190033.
Pełny tekst źródła., Swapnali Matkar. "IMAGE SEGMENTATION METHODS FOR BRAIN MRI IMAGES". International Journal of Research in Engineering and Technology 04, nr 03 (25.03.2015): 263–66. http://dx.doi.org/10.15623/ijret.2015.0403045.
Pełny tekst źródłaSingh, Ram, i Lakhwinder Kaur. "Noise-residue learning convolutional network model for magnetic resonance image enhancement". Journal of Physics: Conference Series 2089, nr 1 (1.11.2021): 012029. http://dx.doi.org/10.1088/1742-6596/2089/1/012029.
Pełny tekst źródłaYan, Rong. "The Value of Convolutional-Neural-Network-Algorithm-Based Magnetic Resonance Imaging in the Diagnosis of Sports Knee Osteoarthropathy". Scientific Programming 2021 (2.07.2021): 1–11. http://dx.doi.org/10.1155/2021/2803857.
Pełny tekst źródłaOdusami, Modupe, Rytis Maskeliūnas i Robertas Damaševičius. "Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer’s Disease Classification". Brain Sciences 13, nr 7 (8.07.2023): 1045. http://dx.doi.org/10.3390/brainsci13071045.
Pełny tekst źródłaWu, Hongliang, Guocheng Chen, Guibao Zhang i Minghua Dai. "Application of Multimodal Fusion Technology in Image Analysis of Pretreatment Examination of Patients with Spinal Injury". Journal of Healthcare Engineering 2022 (12.04.2022): 1–10. http://dx.doi.org/10.1155/2022/4326638.
Pełny tekst źródłaRozprawy doktorskie na temat "MRI IMAGE"
Al-Abdul, Salam Amal. "Image quality in MRI". Thesis, University of Exeter, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288250.
Pełny tekst źródłaCui, Xuelin. "Joint CT-MRI Image Reconstruction". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/86177.
Pełny tekst źródłaPh. D.
Medical imaging techniques play a central role in modern clinical diagnoses and treatments. Consequently, there is a constant demand to increase the overall quality of medical images. Since their inception, multimodal imaging techniques have received a great deal of attention for achieving enhanced imaging performance. Multimodal imaging techniques can provide more detailed diagnostic information by fusing medical images from different imaging modalities, thereby allowing clinical results to be more comprehensive to improve clinical interpretation. A new form of multimodal imaging technique, which combines the imaging procedures of computed tomography (CT) and magnetic resonance imaging (MRI), is known as the “omnitomography.” Both computed tomography and magnetic resonance imaging are the most commonly used medical imaging techniques today and their intrinsic properties are complementary. For example, computed tomography performs well for bones whereas the magnetic resonance imaging excels at contrasting soft tissues. Therefore, a multimodal imaging system built upon the fusion of these two modalities can potentially bring much more information to improve clinical diagnoses. However, the planned omni-tomography systems face enormous challenges, such as the limited ability to perform image reconstruction due to mechanical and hardware restrictions that result in significant undersampling of the raw data. Image reconstruction is a procedure required by both computed tomography and magnetic resonance imaging to convert raw data into final images. A general condition required to produce a decent quality of an image is that the number of samples of raw data must be sufficient and abundant. Therefore, undersampling on the omni-tomography system can cause significant degradation of the image quality or artifacts after image reconstruction. To overcome this drawback, we resort to compressed sensing techniques, which exploit the sparsity of the medical images, to perform iterative based image reconstruction for both computed tomography and magnetic resonance imaging. The sparsity of the images is found by applying sparse transform such as discrete gradient transform or wavelet transform in the image domain. With the sparsity and undersampled raw data, an iterative algorithm can largely compensate for the data inadequacy problem and it can reconstruct the final images from the undersampled raw data with minimal loss of quality. In addition, a novel “projection distance” is created to perform a joint reconstruction which further promotes the quality of the reconstructed images. Specifically, the projection distance exploits the structural similarities shared between the image of computed tomography and magnetic resonance imaging such that the insufficiency of raw data caused by undersampling is further accounted for. The improved performance of the proposed approach is demonstrated using a pair of undersampled body images and a pair of undersampled head images, each of which consists of an image of computed tomography and its magnetic resonance imaging counterpart. These images are tested using the proposed joint reconstruction method in this work, the conventional reconstructions such as filtered backprojection and Fourier transform, and reconstruction strategy without using multimodal imaging information (independent reconstruction). The results from this work show that the proposed method addressed these challenges by significantly improving the image quality from highly undersampled raw data. In particular, it improves about 5dB in signal-to-noise ratio and nearly 10% in structural similarity measurements compared to other methods. It achieves similar image quality by using less than 5% of the X-ray dose for computed tomography and 30% sampling rate for magnetic resonance imaging. It is concluded that, by using compressed sensing techniques and exploiting structural similarities, the planned joint computed tomography and magnetic resonance imaging system can perform imaging outstanding tasks with highly undersampled raw data.
Carmo, Bernardo S. "Image processing in echography and MRI". Thesis, University of Southampton, 2005. https://eprints.soton.ac.uk/194557/.
Pełny tekst źródłaGu, Wei Q. "Automated tracer-independent MRI/PET image registration". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29596.pdf.
Pełny tekst źródłaIvarsson, Magnus. "Evaluation of 3D MRI Image Registration Methods". Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139075.
Pełny tekst źródłaLin, Xiangbo. "Knowledge-based image segmentation using deformable registration: application to brain MRI images". Reims, 2009. http://theses.univ-reims.fr/exl-doc/GED00001121.pdf.
Pełny tekst źródłaThe research goal of this thesis is a contribution to the intra-modality inter-subject non-rigid medical image registration and the segmentation of 3D brain MRI images in normal case. The well-known Demons non-rigid algorithm is studied, where the image intensities are used as matching features. A new force computation equation is proposed to solve the mismatch problem in some regions. The efficiency is shown through numerous evaluations on simulated and real data. For intensity based inter-subject registration, normalizing the image intensities is important for satisfying the intensity correspondence requirements. A non-rigid registration method combining both intensity and spatial normalizations is proposed. Topology constraints are introduced in the deformable model to preserve an expected property in homeomorphic targets registration. The solution comes from the correction of displacement points with negative Jacobian determinants. Based on the registration, a segmentation method of the internal brain structures is studied. The basic principle is represented by ontology of prior shape knowledge of target internal structure. The shapes are represented by a unified distance map computed from the atlas and the deformed atlas, and then integrated into the similarity metric of the cost function. A balance parameter is used to adjust the contributions of the intensity and shape measures. The influence of different parameters of the method and comparisons with other registration methods were performed. Very good results are obtained on the segmentation of different internal structures of the brain such as central nuclei and hippocampus
Soltaninejad, Mohammadreza. "Supervised learning-based multimodal MRI brain image analysis". Thesis, University of Lincoln, 2017. http://eprints.lincoln.ac.uk/30883/.
Pełny tekst źródłaDaga, P. "Towards efficient neurosurgery : image analysis for interventional MRI". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1449559/.
Pełny tekst źródłaChi, Wenjun. "MRI image analysis for abdominal and pelvic endometriosis". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:27efaa89-85cd-4f8b-ab67-b786986c42e3.
Pełny tekst źródłaHagio, Tomoe, i Tomoe Hagio. "Parametric Mapping and Image Analysis in Breast MRI". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621809.
Pełny tekst źródłaKsiążki na temat "MRI IMAGE"
Brant, William E. Body MRI cases. New York: Oxford University Press, 2013.
Znajdź pełny tekst źródłaSong, In-chʻan. MRI ŭi hwajil pʻyŏngka kisul kaebal =: Technology development of MRI image quality evaluation. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.
Znajdź pełny tekst źródłaauthor, Shah Lubdha M., i Nielsen Jared A. author, red. Specialty imaging: Functional MRI. Salt Lake City, Utah: Amirsys, 2014.
Znajdź pełny tekst źródłaBrain imaging with MRI and CT: An image pattern approach. Cambridge: Cambridge University Press, 2012.
Znajdź pełny tekst źródłaContrast-enhanced MRI of the breast. Basel: Karger, 1990.
Znajdź pełny tekst źródłaR, Beck, red. Contrast-enhanced MRI of the breast. Wyd. 2. Berlin: Springer, 1996.
Znajdź pełny tekst źródłaMRI of the lumbar spine: A practical approach to image interpretation. Thorofare, N.J: Slack, 1987.
Znajdź pełny tekst źródłaW, Bancroft Laura, i Bridges, Mellena D., M.D., red. MRI normal variants and pitfalls. Philadelphia, PA: Lippincott Williams and Wilkins, 2009.
Znajdź pełny tekst źródłaPoldrack, Russell A. Handbook of functional MRI data analysis. Cambridge: Cambridge University Press, 2011.
Znajdź pełny tekst źródłaCiulla, Carlo. Improved signal and image interpolation in biomedical applications: The case of magnetic resonance imaging (MRI). Hershey PA: Medical Information Science Reference, 2009.
Znajdź pełny tekst źródłaCzęści książek na temat "MRI IMAGE"
Ashburner, J., i K. J. Friston. "Image Registration". W Functional MRI, 285–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58716-0_26.
Pełny tekst źródłaZeng, Gengsheng Lawrence. "MRI Reconstruction". W Medical Image Reconstruction, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05368-9_7.
Pełny tekst źródłaRajan, Sunder S. "Image Contrast and Pulse Sequences". W MRI, 40–65. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1632-2_4.
Pełny tekst źródłaEnglish, Philip T., i Christine Moore. "Image Production". W MRI for Radiographers, 37–43. London: Springer London, 1995. http://dx.doi.org/10.1007/978-1-4471-3403-9_4.
Pełny tekst źródłaEnglish, Philip T., i Christine Moore. "Image Quality". W MRI for Radiographers, 45–50. London: Springer London, 1995. http://dx.doi.org/10.1007/978-1-4471-3403-9_5.
Pełny tekst źródłaEnglish, Philip T., i Christine Moore. "Image Artifacts". W MRI for Radiographers, 51–70. London: Springer London, 1995. http://dx.doi.org/10.1007/978-1-4471-3403-9_6.
Pełny tekst źródłaMurray, Rachel, i Natasha Werpy. "Image interpretation and artefacts". W Equine MRI, 101–45. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118786574.ch4.
Pełny tekst źródłaQu, Liangqiong, Yongqin Zhang, Zhiming Cheng, Shuang Zeng, Xiaodan Zhang i Yuyin Zhou. "Multimodality MRI Synthesis". W Medical Image Synthesis, 163–87. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003243458-14.
Pełny tekst źródłaWeishaupt, Dominik, Victor D. Köchli i Borut Marincek. "Image Contrast". W How does MRI work?, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-07805-1_3.
Pełny tekst źródłaAhrar, Kamran, i R. Jason Stafford. "MRI-Guided Biopsy". W Percutaneous Image-Guided Biopsy, 49–63. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8217-8_5.
Pełny tekst źródłaStreszczenia konferencji na temat "MRI IMAGE"
Singh, Upasana, i Manoj Kumar Choubey. "A Review: Image Enhancement on MRI Images". W 2021 5th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2021. http://dx.doi.org/10.1109/iscon52037.2021.9702464.
Pełny tekst źródłaOtazo, Ricardo, Ramiro Jordan, Fa-Hsuan Lin i Stefan Posse. "Superresolution Parallel MRI". W 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4379269.
Pełny tekst źródłaFaghihpirayesh, Razieh, Davood Karimi, Deniz Erdogmus i Ali Gholipour. "Automatic brain pose estimation in fetal MRI". W Image Processing, redaktorzy Ivana Išgum i Olivier Colliot. SPIE, 2023. http://dx.doi.org/10.1117/12.2647613.
Pełny tekst źródłaCarlos, Justin Bernard A., Francisco Emmanuel T. Munsayac, Nilo T. Bugtai i Renann G. Baldovino. "MRI Knee Image Enhancement using Image Processing". W 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). IEEE, 2021. http://dx.doi.org/10.1109/hnicem54116.2021.9732053.
Pełny tekst źródłaWang, Jiacheng, Hao Li, Han Liu, Dewei Hu, Daiwei Lu, Keejin Yoon, Kelsey Barter, Francesca Bagnato i Ipek Oguz. "SSL2 Self-Supervised Learning meets semi-supervised learning: multiple clerosis segmentation in 7T-MRI from large-scale 3T-MRI". W Image Processing, redaktorzy Ivana Išgum i Olivier Colliot. SPIE, 2023. http://dx.doi.org/10.1117/12.2654522.
Pełny tekst źródłaManduca, Armando, David S. Lake, Natalia Khaylova i Richard L. Ehman. "Image-space automatic motion correction for MRI images". W Medical Imaging 2004, redaktorzy J. Michael Fitzpatrick i Milan Sonka. SPIE, 2004. http://dx.doi.org/10.1117/12.532952.
Pełny tekst źródłaDevadas, Prathima, G. Kalaiarasi i M. Selvi. "Intensity based Image Registration on Brain MRI Images". W 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2020. http://dx.doi.org/10.1109/icirca48905.2020.9183191.
Pełny tekst źródłaDSouza, Adora M., Lele Chen, Yue Wu, Anas Z. Abidin, Chenliang Xu i Axel Wismüller. "MRI tumor segmentation with densely connected 3D CNN". W Image Processing, redaktorzy Elsa D. Angelini i Bennett A. Landman. SPIE, 2018. http://dx.doi.org/10.1117/12.2293394.
Pełny tekst źródłaPlassard, Andrew J., L. Taylor Davis, Allen T. Newton, Susan M. Resnick, Bennett A. Landman i Camilo Bermudez. "Learning implicit brain MRI manifolds with deep learning". W Image Processing, redaktorzy Elsa D. Angelini i Bennett A. Landman. SPIE, 2018. http://dx.doi.org/10.1117/12.2293515.
Pełny tekst źródłaNoothout, Julia, Elbrich Postma, Sanne Boesveldt, Bob D. de Vos, Paul Smeets i Ivana Išgum. "Automatic segmentation of the olfactory bulbs in MRI". W Image Processing, redaktorzy Bennett A. Landman i Ivana Išgum. SPIE, 2021. http://dx.doi.org/10.1117/12.2580354.
Pełny tekst źródłaRaporty organizacyjne na temat "MRI IMAGE"
Yang, Xiaofeng, Tian Liu, Jani Ashesh, Hui Mao i Walter Curran. Fusion of Ultrasound Tissue-Typing Images with Multiparametric MRI for Image-guided Prostate Cancer Radiation Therapy. Fort Belvoir, VA: Defense Technical Information Center, październik 2014. http://dx.doi.org/10.21236/ada622473.
Pełny tekst źródłaBaumgaertel, Jessica A., Paul A. Bradley i Ian L. Tregillis. 65036 MMI data matched qualitatively by RAGE (with mix) synthetic MMI images. Office of Scientific and Technical Information (OSTI), luty 2014. http://dx.doi.org/10.2172/1122056.
Pełny tekst źródłaGrossberg, Stephen. A MURI Center for Intelligent Biomimetic Image Processing and Classification. Fort Belvoir, VA: Defense Technical Information Center, listopad 2007. http://dx.doi.org/10.21236/ada474727.
Pełny tekst źródłaGarrett, A. J. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite. Office of Scientific and Technical Information (OSTI), styczeń 2000. http://dx.doi.org/10.2172/752199.
Pełny tekst źródłaKurdziel, Karen, Michael Hagan, Jeffrey Williamson, Donna McClish, Panos Fatouros, Jerry Hirsch, Rhonda Hoyle, Kristin Schmidt, Dorin Tudor i Jie Liu. Multimodality Image-Guided HDR/IMRT in Prostate Cancer: Combined Molecular Targeting Using Nanoparticle MR, 3D MRSI, and 11C Acetate PET Imaging. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada446542.
Pełny tekst źródłaMartin, Kathi, Nick Jushchyshyn i Claire King. James Galanos Evening Gown c. 1957. Drexel Digital Museum, 2018. http://dx.doi.org/10.17918/jkyh-1b56.
Pełny tekst źródłaMartin, Kathi, Nick Jushchyshyn i Daniel Caulfield-Sriklad. 3D Interactive Panorama Jessie Franklin Turner Evening Gown c. 1932. Drexel Digital Museum, 2015. http://dx.doi.org/10.17918/9zd6-2x15.
Pełny tekst źródłaMarcot, Bruce, M. Jorgenson, Thomas Douglas i Patricia Nelsen. Photographic aerial transects of Fort Wainwright, Alaska. Engineer Research and Development Center (U.S.), sierpień 2022. http://dx.doi.org/10.21079/11681/45283.
Pełny tekst źródłaLamontagne, M., K. B. S. Burke i L. Olson. Felt reports and impact of the November 25, 1988, magnitude 5.9 Saguenay, Quebec, earthquake sequence. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328194.
Pełny tekst źródłaMartin, Kathi, Nick Jushchyshyn i Claire King. Christian Lacroix Evening gown c.1990. Drexel Digital Museum, 2017. http://dx.doi.org/10.17918/wq7d-mc48.
Pełny tekst źródła