Gotowa bibliografia na temat „Moving Sound Source”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Moving Sound Source”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Moving Sound Source"
Kim, Hyun-Don, Kazunori Komatani, Tetsuya Ogata i Hiroshi G. Okuno. "Binaural Active Audition for Humanoid Robots to Localise Speech over Entire Azimuth Range". Applied Bionics and Biomechanics 6, nr 3-4 (2009): 355–67. http://dx.doi.org/10.1155/2009/817874.
Pełny tekst źródłaMakino, Yusuke, i Yasushi Takano. "Sound source directivity considering source movement". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 4 (1.02.2023): 3579–89. http://dx.doi.org/10.3397/in_2022_0505.
Pełny tekst źródłaЗаєць, Віталій Пантелєйович, i Светлана Геннадьевна Котенко. "Sound of the moving point source". Electronics and Communications 20, nr 4 (30.05.2016): 89–93. http://dx.doi.org/10.20535/2312-1807.2015.20.4.70074.
Pełny tekst źródłaLiu, Lili, Jinghua Li, Xiaoyi Feng, Haijie Shi i Xiaobiao Zhang. "Research on underwater sound source ranging algorithm based on histogram filtering". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 39, nr 3 (czerwiec 2021): 492–501. http://dx.doi.org/10.1051/jnwpu/20213930492.
Pełny tekst źródłaAkutsu, Mariko, Toki Uda, Yasuhiro Oikawa i Kohei Yatabe. "Experimental observation of the sound field around a moving source using parallel phase-shifting interferometry". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 4 (1.02.2023): 3733–39. http://dx.doi.org/10.3397/in_2022_0525.
Pełny tekst źródłaAlkmim, Mansour, Guillaume Vandernoot, Jacques Cuenca, Karl Janssens, Wim Desmet i Laurent De Ryck. "Real-time sound synthesis of pass-by noise: comparison of spherical harmonics and time-varying filters". Acta Acustica 7 (2023): 37. http://dx.doi.org/10.1051/aacus/2023029.
Pełny tekst źródłaSam Hun, Hanisah, Siti Norulakmal Che Abu Bakar i Anis Nazihah Mat Daud. "Acoustic Doppler effect experiment: integration of frequency sound generator, tracker and visual analyser". Physics Education 58, nr 2 (26.01.2023): 025015. http://dx.doi.org/10.1088/1361-6552/acb129.
Pełny tekst źródłaSasaki, Yo, Kentaro Matsui i Yasushige Nakayama. "Synthesis of sound field from moving complex sources with arbitrary trajectories by linear and spherical loudspeaker arrays". Journal of the Acoustical Society of America 154, nr 1 (1.07.2023): 571–88. http://dx.doi.org/10.1121/10.0020268.
Pełny tekst źródłaHan, Jong-Ho. "Tracking Control of Moving Sound Source Using Fuzzy-Gain Scheduling of PD Control". Electronics 9, nr 1 (21.12.2019): 14. http://dx.doi.org/10.3390/electronics9010014.
Pełny tekst źródłaBryukhovetski, Anatoliy, i Aleksey Vichkan'. "Determination of the green function of a pulsed acoustic source in a uniform homogeneous flow with an arbitrary Mach number". EUREKA: Physics and Engineering, nr 1 (19.01.2023): 165–76. http://dx.doi.org/10.21303/2461-4262.2023.002743.
Pełny tekst źródłaRozprawy doktorskie na temat "Moving Sound Source"
Lee, Jong-Sik. "Time-varying filter modelling and time-frequency characterisation of non-stationary sound fields due to a moving source". Thesis, University of Southampton, 1989. https://eprints.soton.ac.uk/52248/.
Pełny tekst źródłaIto, Masanori, Yoshinori Takeuchi, Tetsuya Matsumoto, Hiroaki Kudo i Noboru Ohnishi. "Blind Signal Separation of Moving Sound Sources". INTELLIGENT MEDIA INTEGRATION NAGOYA UNIVERSITY / COE, 2004. http://hdl.handle.net/2237/10347.
Pełny tekst źródłaHuang, Lixi. "Wave drag and power in moving sources". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239640.
Pełny tekst źródłaBuret, Marc. "New analytical models for outdoor moving sources of sound". Thesis, n.p, 2002. http://library7.open.ac.uk/abstracts/page.php?thesisid=64.
Pełny tekst źródłaCamargo, Hugo Elias. "A Frequency Domain Beamforming Method to Locate Moving Sound Sources". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/27765.
Pełny tekst źródłaPh. D.
Wei, Wei. "Underwater measurement of the sound-intensity vector : its use in locating sound sources, and in measuring the sound power of stationary and moving sources /". Full text available from ProQuest UM Digital Dissertations, 1994. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=0&did=1296083321&SrchMode=1&sid=4&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268675088&clientId=22256.
Pełny tekst źródłaTypescript. "May 1994 ." Dissertation director: Dr. Robert Hickling Committee chair: Dr. Richard Raspet Includes bibliographical references (leaves 115-118). Also available online via ProQuest to authorized users.
Pignier, Nicolas. "Predicting the sound field from aeroacoustic sources on moving vehicles : Towards an improved urban environment". Doctoral thesis, KTH, Farkost och flyg, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205791.
Pełny tekst źródłaI ett samhälle där buller håller på att bli ett stort hälsoproblem och en ekonomisk belastning, är ljudutsläpp en allt viktigare aspekt för fordonstillverkare. Då ungefär en fjärdedel av den europeiska befolkningen bor nära vägar med tung trafik, är åtgärder för minskat trafikbuller i stadsmiljö en hög prioritet. Introduktionen av elfordon på marknaden och behovet av ljudsystem för att varna omgivningen kräver också ett nytt synsätt och tekniska angreppssätt som behandlar bullerproblemen ur ett bredare perspektiv. Buller bör inte längre betraktas som en biprodukt av konstruktionen, utan som en integrerad del av den. Att utveckla mer hållbara marktransporter kommer att kräva en bättre förståelse av det utstrålade ljudfältet vid olika realistiska driftsförhållanden, utöver de nuvarande standardiserade kraven för förbifartstest som utförs i ett fritt fält. En viktig aspekt för att förbättra denna förståelse är utvecklingen av effektiva numeriska verktyg för att beräkna ljudalstring och ljudutbredning från fordon i rörelse. I denna avhandling föreslås en metodik som syftar till att utvärdera förbifartsljud som alstras av fordons akustiska källor i en förenklad stadsmiljö, här med fokus på strömningsgenererat ljud. Även om det aerodynamiska bullret är fortfarande en liten del av de totala bullret från vägfordon i urbana miljöer, kommer denna andel säkerligen att öka inom en snar framtid med införandet av tysta elektriska motorer och de bullerreducerande däck som introduceras på marknaden. I detta arbete presenteras en komplett modellering av problemet från ljudalstring till ljudutbredning och förbifartsanalys i tre steg. Utgångspunkten är beräkningar av strömningen kring geometrin av intresse; det andra steget är identifiering av ljudkällorna som genereras av strömningen, och det tredje steget rör ljudutbredning från rörliga källor till observatörer, inklusive effekten av reflektioner och spridning från närliggande ytor. I det första steget löses flödet genom detached-eddy simulation (DES) för kompressibel strömning. Identifiering av ljudkällor i det andra steget görs med direkt numerisk lobformning med avfaltning med hjälp av linjärprogrammering, där källdata extraheras från flödessimuleringarna. Resultatet av detta steg är en uppsättning av okorrelerade akustiska monopolkällor. Steg tre utnyttjar dessa källor som indata till en ljudutbredningsmodel baserad på beräkningar punkt-till-punkt med Greensfunktioner för rörliga källor, och med en modifierad Kirchhoff-integral under Kirchhoffapproximationen för att beräkna reflektioner mot byggda ytor. Metodiken demonstreras med exemplet med det aeroakustiska ljud som genereras av ett NACA-luftintag som rör sig i en förenklad urban miljö. Med hjälp av denna metod kan man få insikter om ljudalstringsmekanismer, om källegenskaper och om ljudfältet som genereras av källor när de rör sig i en förenklad stadsmiljö.
QC 20170425
Sousa, Gustavo Henrique Montesião de. "Auralização de fontes sonoras móveis usando HRTFs". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-19092011-213316/.
Pełny tekst źródłaThe goal of this work is the development of tools that allow simulating through headphones the psychoacoustic effect of sound sources moving in space, by the auralisation of the original monophonic signals. Although binaural auralisation can be implemented using variations in delays (called ITD interaural time difference) and in intensities (called ILD interaural level difference) among channels, better psychoacoustic results can be achieved using digital filters known as HRTFs (head related transfer functions). A HRTF inserts in the monophonic signal information that allow the auditory system to perceive this signal to be as if coming from a specific direction, which is unique for each single HRTF. Thus, to position a static sound source at a specific direction, filtering the original signal with the HRTF from the desired direction would be enough. Nevertheless, if it is desired that the sound source moves in a continuous trajectory, an infinitely large amount of filters would be necessary. Since they are usually obtained by measurements, such an arbitrarily large amount of them is not available. In this case, HRTF interpolation techniques that generate intermediary filters must be used. This work presents three new HRTF interpolation techniques in order to auralise moving sound sources: the triangular interpolation, a linear interpolation technique based on the VBAP amplitude panning technique; the discrete movements method, an extremely efficient technique that exploits the auditory systems limitations in perceiving very small changes in direction; and the spectral interpolation, that alters continuously the structures of the HRTFs to generate interpolated filters. Implementations of these techniques are discussed and numerical tests are also presented.
Lee, Po-Lin, i 李柏霖. "The Investigations on the Sound Field Generated by Moving Sound Source". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/83380965990684888265.
Pełny tekst źródła國立清華大學
動力機械工程學系
98
Abstract The Phenomenon of the sound field generated by a moving sound source has been investigated in the present work with two-part subject. The first part is to establish the mathematical model and the corresponding numerical scheme; the second part is to employ the established numerical scheme in practical acoustic problems. In order to establish the mathematical model, a novel governing equation is derived and it can be viewed as a modified Ffowcs Williams-Hawkings equation (FW-H-equation). The major characteristic of the novel governing equation is to include the interior and the exterior domain. In addition, the acoustic position vector, the quality describes the relations about the distance and the direction between the observer and the sound source, is represented for applying to the condition of the sound source moving with variable speed. As to the solution of the governing equation, it is expressed in the form of the Surface Integral Formula (SIF) by convoluting the free-space Green’s function in time domain. Then, this SIF is used to numerical implementation in the concept of the Boundary Element Method in time domain (BEMTD). After establishing the numerical scheme and verifying the correctness of the calculating results, two acoustic problems were investigated for revealing the ability of the numerical scheme. The first case considers that a moving line source with variable speed. This case reveals that the restriction of the constant speed is released in the established numerical scheme. For the simulation results, it shows that the effect of the variable speed not only influenced the variation rate of the frequency modulation, i.e., Doppler effect, but also the time about the maximum acoustic pressure being observed. In addition, the rate of the amplitude variation is shaper than that in the constant speed case when the line source is approaching to the observer point. The second case investigates the binaural hearing perceived by a moving sound source. For understanding the weighting of the eventful cues about perceiving the direction and the speed of the moving sound source, the sound pressure at the entrance of the external ear canal was calculated by the established numerical scheme. Furthermore, the Hilbert Huang transformation (HHT) is used to find the instantaneous frequencies of acoustic signal. Results show that the Interaural Level Difference (ILD) and the frequencies shifting are eventful than Interaural Time Difference (ITD). The perceived loudness level will be larger in the motional case than that found in the stationary case. These engineering problems are shown that the acoustic properties are different for comparing with the sound field generated by a moving sound source and that by a stationary sound source. As to the analytical methodology developed in the present work, it turns out that it indeed can be used to simulate and analyze these acoustic problems whenever the sound source moves or not. Furthermore, some meaningful phenomenon relating to these problems then can be observed through discussing the calculating results.
CHEN, TING HAN, i 陳廷翰. "A Study of the Ability to Discriminate Moving Sound Source for Monaural Hearing and Binaural Hearing". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/rtbaq8.
Pełny tekst źródła國立臺中教育大學
資訊工程學系
106
Binaural hearing outperforms monaural hearing in both speech perception and sound source localization owning to benefit from head shadow and summation effects. Especially monaural hearing is lacking in benefits from head shadow and summation effects, the only mean to discriminate is volume and that highly decreases performance of listeners. Furthermore, in real environment, sound source may be moving, that is the issue will be discussed in this thesis. HRTF database is used to simulate the dynamic or static audio used in experiments. All subject are normal-hearing and target sound sources includes 1000Hz pure tone, Chinese sentences and Chinese sentences with SSN, all these three cases will used in Binaural hearing test and monaural hearing(left ear only and right ear only) so that the result of tracking different sound sources will be acquired and discussed. The results from 1000Hz experiment will be used to compare to other results as a test basis. Also, acquiring comparison of 1000Hz and Chinese sentences will be necessary as Chinese is a tonal language. And the experiment results do actually show the behavior of all subjects are quiet close unlike the result from sentences experiment. Then the results of sentences with SSN are more unpredictable, some further research may be necessary to get more information.
Książki na temat "Moving Sound Source"
Commission on Preservation and Access., red. Directory of information sources on scientific research related to the preservation of sound recordings, still and moving images, and magnetic tape. Washington, DC: Commission on Preservation and Access, 1993.
Znajdź pełny tekst źródłaNational Film and Sound Archive (Australia), red. World War II: Australians at home and overseas : a selected catalogue of moving image, recorded sound, and documentation materials from the collection of the National Film and Sound Archive. [Canberra?]: The Archive, 1995.
Znajdź pełny tekst źródłaLayden, Timothy B. Reflection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199351411.003.0022.
Pełny tekst źródłaLewis, Hannah. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190635978.003.0001.
Pełny tekst źródłaCzęści książek na temat "Moving Sound Source"
Nakajima, Hirofumi, Kazuhiro Nakadai, Yuji Hasegawa i Hiroshi Tsujino. "Moving Sound Source Extraction by Time-Variant Beamforming". W New Frontiers in Artificial Intelligence, 47–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78197-4_6.
Pełny tekst źródłaMurakami, Koki, Keiichi Watanuki i Kazunori Kaede. "Spatial Perception Under Visual Restriction by Moving a Sound Source Using 3D Audio". W Advances in Industrial Design, 757–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80829-7_93.
Pełny tekst źródłaBerthelot, Yves H., i Ilene J. Busch-Vishniac. "Optical Generation of Sound: Experiments with a Moving Thermoacoustic Source. The Problem of Oblique Incidence of the Laser Beam". W Progress in Underwater Acoustics, 603–10. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_71.
Pełny tekst źródłaAntes, H., i T. Meise. "3-D Sound Generated by Moving Sources". W Boundary Integral Methods, 55–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-85463-7_5.
Pełny tekst źródłaRoger, Michel. "Sound Radiation by Moving Surfaces and the Green’s Functions Technique". W Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 73–116. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-7091-1458-2_2.
Pełny tekst źródłaMo, P., X. Wang i W. Jiang. "A Frequency Compensation Method to Smooth Frequency Fluctuation for Locating Moving Acoustic Sources". W Fluid-Structure-Sound Interactions and Control, 365–70. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_55.
Pełny tekst źródłaAltman, J. A. "Information Processing Concerning Moving Sound Sources in the Auditory Centers and its Utilization by Brain Integrative and Motor Structures". W Auditory Pathway, 349–54. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1300-7_49.
Pełny tekst źródłaDunai, Larisa, Guillermo Peris-Fajarns, Teresa Magal-Royo, Beatriz Defez i Victor Santiago. "Virtual Moving Sound Source Localization through Headphones". W Advances in Sound Localization. InTech, 2011. http://dx.doi.org/10.5772/14643.
Pełny tekst źródła"- Moving sound sources and receivers". W Acoustics in Moving Inhomogeneous Media, 178–203. CRC Press, 2015. http://dx.doi.org/10.1201/b18922-10.
Pełny tekst źródła"Moving Thermoradiation Sources Of Sound". W Radiation Acoustics. CRC Press, 2004. http://dx.doi.org/10.1201/9780203402702.ch8.
Pełny tekst źródłaStreszczenia konferencji na temat "Moving Sound Source"
Ohmori, Seiichi, i Kenji Suyama. "Multiple moving sound source tracking using PSO". W 2012 11th International Conference on Signal Processing (ICSP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icosp.2012.6491618.
Pełny tekst źródłaPertila, P., M. Parviainen, T. Korhonen i A. Visa. "Moving sound source localization in large areas". W 2005 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2005. http://dx.doi.org/10.1109/ispacs.2005.1595517.
Pełny tekst źródłaNakadai, Kazuhiro, Hirofumi Nakajima, Gökhan Ince i Yuji Hasegawa. "Sound source separation and automatic speech recognition for moving sources". W 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iros.2010.5651167.
Pełny tekst źródłaMane, Shubham S., Swapnil G. Mali i S. P. Mahajan. "Localization of Steady Sound Source and Direction Detection of Moving Sound Source using CNN". W 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2019. http://dx.doi.org/10.1109/icccnt45670.2019.8944612.
Pełny tekst źródłaSasaki, Yoko, Ryo Tanabe i Hiroshi Takemura. "Probabilistic 3D sound source mapping using moving microphone array". W 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759214.
Pełny tekst źródłaNakadai, Kazuhiro, Hirofumi Nakajima, Yuji Hasegawa i Hiroshi Tsujino. "Sound source separation of moving speakers for robot audition". W ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960426.
Pełny tekst źródłaKim, Hyun-Don, Kazunori Komatani, Tetsuya Ogata i Hiroshi G. Okuno. "Evaluation of Two-Channel-Based Sound Source Localization Using 3D Moving Sound Creation Tool". W International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008). IEEE, 2008. http://dx.doi.org/10.1109/icks.2008.25.
Pełny tekst źródłaHan, Jongho, Sunsin Han, Yan Li i Jangmyung Lee. "Tracking of a moving object by following the sound source". W 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2012. http://dx.doi.org/10.1109/aim.2012.6265952.
Pełny tekst źródłaYang, Desen, Xiaoxia Guo, Shengguo Shi i Bo Hu. "The Helmholtz Equation Least Squares Method for Moving Sound Source". W 2010 2nd International Conference on Information Engineering and Computer Science (ICIECS). IEEE, 2010. http://dx.doi.org/10.1109/iciecs.2010.5677647.
Pełny tekst źródłaWang, Lin, Ricardo Sanchez-Matilla i Andrea Cavallaro. "Tracking a moving sound source from a multi-rotor drone". W 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8594483.
Pełny tekst źródła