Artykuły w czasopismach na temat „Mott-Schottky Catalyst”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mott-Schottky Catalyst”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Huang, Yuan, Haoting Yan, Chenyang Zhang, Yize Wang, Qinhong Wei i Renkun Zhang. "Interfacial Electronic Effects in Co@N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene". Nanomaterials 11, nr 11 (20.10.2021): 2776. http://dx.doi.org/10.3390/nano11112776.
Pełny tekst źródłaRen, Yongwang, Huizhong Xu, Beibei Han i Jing Xu. "Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation". Molecules 28, nr 10 (17.05.2023): 4136. http://dx.doi.org/10.3390/molecules28104136.
Pełny tekst źródłaZuraev, A. V., Y. V. Grigoriev, C. M. Verbilo, L. S. Ivashkevich, A. S. Lyakhov i O. A. Ivashkevich. "PalladiumPolymer Nanocomposite: An Efficient Catalyst for Green Suzuki–Miyaura Cross-Coupling and Mott-Schottky Nitrobenzene Reduction Processes". Proceedings of the National Academy of Sciences of Belarus, Chemical Series 55, nr 2 (29.06.2019): 196–204. http://dx.doi.org/10.29235/1561-8331-2019-55-2-196-204.
Pełny tekst źródłaSarkar, Bidushi, Debanjan Das i Karuna Kar Nanda. "pH-dependent hydrogen evolution using spatially confined ruthenium on hollow N-doped carbon nanocages as a Mott–Schottky catalyst". Journal of Materials Chemistry A 9, nr 24 (2021): 13958–66. http://dx.doi.org/10.1039/d1ta02375f.
Pełny tekst źródłaXu, Zhixiao, i Xiaolei Wang. "Nickel-Molybdenum Carbide/Nitrogen-Doped Carbon Mott-Schottky Nanoarray for Water Spitting". ECS Meeting Abstracts MA2022-01, nr 55 (7.07.2022): 2307. http://dx.doi.org/10.1149/ma2022-01552307mtgabs.
Pełny tekst źródłaJiao, Zhifeng, Zhaoyang Zhai, Xiaoning Guo i Xiang-Yun Guo. "Visible-Light-Driven Photocatalytic Suzuki–Miyaura Coupling Reaction on Mott–Schottky-type Pd/SiC Catalyst". Journal of Physical Chemistry C 119, nr 6 (3.02.2015): 3238–43. http://dx.doi.org/10.1021/jp512567h.
Pełny tekst źródłaArifin, Md Noor, Kaykobad Md Rezaul Karim, Hamidah Abdullah i Maksudur R. Khan. "Synthesis of Titania Doped Copper Ferrite Photocatalyst and Its Photoactivity towards Methylene Blue Degradation under Visible Light Irradiation". Bulletin of Chemical Reaction Engineering & Catalysis 14, nr 1 (15.04.2019): 219. http://dx.doi.org/10.9767/bcrec.14.1.3616.219-227.
Pełny tekst źródłaYan, Ruyu, Xinyi Liu, Haijie Zhang, Meng Ye, Zhenxing Wang, Jianjian Yi, Binxian Gu i Qingsong Hu. "Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight". Materials 16, nr 3 (27.01.2023): 1111. http://dx.doi.org/10.3390/ma16031111.
Pełny tekst źródłaKarim, Kaykobad Md Rezaul, Huei Ruey Ong, Hamidah Abdullah, Abu Yousuf, Chin Kui Cheng i Mohd Maksudur Rahman Khan. "Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction". Bulletin of Chemical Reaction Engineering & Catalysis 13, nr 2 (11.06.2018): 236. http://dx.doi.org/10.9767/bcrec.13.2.1317.236-244.
Pełny tekst źródłaZhang, Chaoqi, Ruifeng Du, Jordi Jacas Biendicho, Mingjie Yi, Ke Xiao, Dawei Yang, Ting Zhang i in. "Tubular CoFeP@CN as a Mott–Schottky Catalyst with Multiple Adsorption Sites for Robust Lithium−Sulfur Batteries". Advanced Energy Materials 11, nr 24 (8.05.2021): 2100432. http://dx.doi.org/10.1002/aenm.202100432.
Pełny tekst źródłaWang, Jiashi, Qinhong Wei, Qingxiang Ma, Zhongya Guo, Fangfang Qin, Zinfer R. Ismagilov i Wenzhong Shen. "Constructing Co@N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural". Applied Catalysis B: Environmental 263 (kwiecień 2020): 118339. http://dx.doi.org/10.1016/j.apcatb.2019.118339.
Pełny tekst źródłaGoel, Bharat, Ved Vyas, Nancy Tripathi, Ajit Kumar Singh, Prashanth W. Menezes, Arindam Indra i Shreyans K. Jain. "Amidation of Aldehydes with Amines under Mild Conditions Using Metal‐Organic Framework Derived NiO@Ni Mott‐Schottky Catalyst". ChemCatChem 12, nr 22 (7.09.2020): 5743–49. http://dx.doi.org/10.1002/cctc.202001041.
Pełny tekst źródłaJiang, Jing, Wei Wei, Zhen Ren, Yang Luo, Xinzhi Wang, Ying Xu, Mingming Chang i Lunhong Ai. "Facile construction of robust Ru-Co3O4 Mott-Schottky catalyst enabling efficient dehydrogenation of ammonia borane for hydrogen generation". Journal of Colloid and Interface Science 646 (wrzesień 2023): 25–33. http://dx.doi.org/10.1016/j.jcis.2023.04.181.
Pełny tekst źródłaYang, Guangying, Cheng Pan, Haitao Yang i Nianjie Feng. "Carbon-supported nickel catalyst prepared from steam-exploded poplar by recovering Ni(II)". BioResources 16, nr 3 (15.06.2021): 5481–93. http://dx.doi.org/10.15376/biores.16.3.5481-5493.
Pełny tekst źródłaHernández, Rafael, José Rosendo Hernández-Reséndiz, Marisela Cruz-Ramírez, Rodrigo Velázquez-Castillo, Luis Escobar-Alarcón, Luis Ortiz-Frade i Karen Esquivel. "Au-TiO2 Synthesized by a Microwave- and Sonochemistry-Assisted Sol-Gel Method: Characterization and Application as Photocatalyst". Catalysts 10, nr 9 (13.09.2020): 1052. http://dx.doi.org/10.3390/catal10091052.
Pełny tekst źródłaCheng, Saisai, Xufeng Meng, Ningzhao Shang, Shutao Gao, Cheng Feng, Chun Wang i Zhi Wang. "Pd supported on g-C3N4 nanosheets: Mott–Schottky heterojunction catalyst for transfer hydrogenation of nitroarenes using formic acid as hydrogen source". New Journal of Chemistry 42, nr 3 (2018): 1771–78. http://dx.doi.org/10.1039/c7nj04268j.
Pełny tekst źródłaTamiru Mengistu, Mintesinot, Tadele Hunde Wondimu, Dinsefa Mensur Andoshe, Jung Yong Kim, Osman Ahmed Zelekew, Fekadu Gashaw Hone, Newaymedhin Aberra Tegene, Noto Susanto Gultom i Ho Won Jang. "g -C3N4–Co3O4 Z-Scheme Junction with Green-Synthesized ZnO Photocatalyst for Efficient Degradation of Methylene Blue in Aqueous Solution". Bioinorganic Chemistry and Applications 2023 (5.06.2023): 1–14. http://dx.doi.org/10.1155/2023/2948342.
Pełny tekst źródłaHenríquez, Rodrigo, Paula Salazar Nogales, Paula Grez Moreno, Eduardo Muñoz Cartagena, Patricio Leyton Bongiorno, Elena Navarrete-Astorga i Enrique A. Dalchiele. "One-Step Hydrothermal Synthesis of Cu2ZnSnS4 Nanoparticles as an Efficient Visible Light Photocatalyst for the Degradation of Congo Red Azo Dye". Nanomaterials 13, nr 11 (25.05.2023): 1731. http://dx.doi.org/10.3390/nano13111731.
Pełny tekst źródłaGahlawat, Soniya, Nusrat Rashid i Pravin P. Ingole. "n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance". Zeitschrift für Physikalische Chemie 232, nr 9-11 (28.08.2018): 1551–66. http://dx.doi.org/10.1515/zpch-2018-1140.
Pełny tekst źródłaZainab K. Ali i Mazin A. Mahdi. "Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting". Iraqi Journal of Physics 20, nr 4 (1.12.2022): 66–81. http://dx.doi.org/10.30723/ijp.v20i4.1070.
Pełny tekst źródłaWu, Peiwen, Zili Wu, David R. Mullins, Shi-Ze Yang, Xue Han, Yafen Zhang, Guo Shiou Foo i in. "Promoting Pt catalysis for CO oxidation via the Mott–Schottky effect". Nanoscale 11, nr 40 (2019): 18568–74. http://dx.doi.org/10.1039/c9nr04055b.
Pełny tekst źródłaKgoetlana, Charlie M., Soraya P. Malinga i Langelihle N. Dlamini. "Photocatalytic Degradation of Chlorpyrifos with Mn-WO3/SnS2 Heterostructure". Catalysts 10, nr 6 (21.06.2020): 699. http://dx.doi.org/10.3390/catal10060699.
Pełny tekst źródłaWon, Dong-Il, Jong-Su Lee, Ha-Yeon Cheong, Minji Cho, Won-Jo Jung, Ho-Jin Son, Chyongjin Pac i Sang Ook Kang. "Organic–inorganic hybrid photocatalyst for carbon dioxide reduction". Faraday Discussions 198 (2017): 337–51. http://dx.doi.org/10.1039/c6fd00222f.
Pełny tekst źródłaZhang, Guangqiang, Hong Su i Yan Zhang. "Construction of Glutinous Rice Potpourri-like MOTT−Schottky Ni/CeO2 Heterojunction Nanosheets for Robust Electrochemical Water Reduction". Energies 15, nr 24 (13.12.2022): 9443. http://dx.doi.org/10.3390/en15249443.
Pełny tekst źródłaLee, Siaw Foon, Eva Jimenez-Relinque, Isabel Martinez i Marta Castellote. "Effects of Mott–Schottky Frequency Selection and Other Controlling Factors on Flat-Band Potential and Band-Edge Position Determination of TiO2". Catalysts 13, nr 6 (13.06.2023): 1000. http://dx.doi.org/10.3390/catal13061000.
Pełny tekst źródłaMatsuzawa, Koichi, Atsushi Nozaka i Akimitsu Ishihara. "(Digital Presentation) Mo Added Zr Oxide-Based Thin Film for Oxygen Evolution Catalyst in Alkaline Solution". ECS Meeting Abstracts MA2022-01, nr 34 (7.07.2022): 1347. http://dx.doi.org/10.1149/ma2022-01341347mtgabs.
Pełny tekst źródłaWang, Lu, Yue Zhao, Linghao Liu, Ziyi Zheng, Zijun Liu, Fuhao Zhang, Lin Wang i Zhuangjun Fan. "Acetylene functionalized covalent triazine frameworks with AuPd nanoparticles as photocatalysts for hydrogen evolution from formic acid". IOP Conference Series: Earth and Environmental Science 1171, nr 1 (1.04.2023): 012024. http://dx.doi.org/10.1088/1755-1315/1171/1/012024.
Pełny tekst źródłaMureseanu, Mihaela, Nicoleta Cioatera i Gabriela Carja. "Fe-Ce/Layered Double Hydroxide Heterostructures and Their Derived Oxides: Electrochemical Characterization and Light-Driven Catalysis for the Degradation of Phenol from Water". Nanomaterials 13, nr 6 (8.03.2023): 981. http://dx.doi.org/10.3390/nano13060981.
Pełny tekst źródłaPermporn, Darika, Rattabal Khunphonoi, Jetsadakorn Wilamat, Pongtanawat Khemthong, Prae Chirawatkul, Teera Butburee, Weradesh Sangkhun i in. "Insight into the Roles of Metal Loading on CO2 Photocatalytic Reduction Behaviors of TiO2". Nanomaterials 12, nr 3 (29.01.2022): 474. http://dx.doi.org/10.3390/nano12030474.
Pełny tekst źródłaXu, Zhixiao, Song Jin, Min Ho Seo i Xiaolei Wang. "Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis". Applied Catalysis B: Environmental 292 (wrzesień 2021): 120168. http://dx.doi.org/10.1016/j.apcatb.2021.120168.
Pełny tekst źródłaCai, Yi-Yu, Xin-Hao Li, Ya-Nan Zhang, Xiao Wei, Kai-Xue Wang i Jie-Sheng Chen. "Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst". Angewandte Chemie International Edition 52, nr 45 (23.09.2013): 11822–25. http://dx.doi.org/10.1002/anie.201304652.
Pełny tekst źródłaPeng, Lingxin, Liang Su, Xu Yu, Rongyan Wang, Xiangzhi Cui, Han Tian, Shaowen Cao, Bao Yu Xia i Jianlin Shi. "Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution". Applied Catalysis B: Environmental 308 (lipiec 2022): 121229. http://dx.doi.org/10.1016/j.apcatb.2022.121229.
Pełny tekst źródłaKang, Yao, Shuo Wang, Kwan San Hui, Shuxing Wu, Duc Anh Dinh, Xi Fan, Feng Bin i in. "Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction". Nano Research 15, nr 4 (12.12.2021): 2952–60. http://dx.doi.org/10.1007/s12274-021-3917-7.
Pełny tekst źródłaYuan, Menglei, Junwu Chen, Yiling Bai, Zhanjun Liu, Jingxian Zhang, Tongkun Zhao, Qin Wang, Shuwei Li, Hongyan He i Guangjin Zhang. "Unveiling Electrochemical Urea Synthesis by Co‐Activation of CO 2 and N 2 with Mott–Schottky Heterostructure Catalysts". Angewandte Chemie 133, nr 19 (8.04.2021): 11005–13. http://dx.doi.org/10.1002/ange.202101275.
Pełny tekst źródłaYuan, Menglei, Junwu Chen, Yiling Bai, Zhanjun Liu, Jingxian Zhang, Tongkun Zhao, Qin Wang, Shuwei Li, Hongyan He i Guangjin Zhang. "Unveiling Electrochemical Urea Synthesis by Co‐Activation of CO 2 and N 2 with Mott–Schottky Heterostructure Catalysts". Angewandte Chemie International Edition 60, nr 19 (8.04.2021): 10910–18. http://dx.doi.org/10.1002/anie.202101275.
Pełny tekst źródłaZhang, Zhicheng, Wei Cai, Shaopeng Rong, Hongxia Qu i Huifang Xie. "Hollow CuFe2O4/MgFe2O4 Heterojunction Boost Photocatalytic Oxidation Activity for Organic Pollutants". Catalysts 12, nr 8 (18.08.2022): 910. http://dx.doi.org/10.3390/catal12080910.
Pełny tekst źródłaLi, Zhen, Zhuoyang Gao, Bingwen Li, Lili Zhang, Rong Fu, Yan Li, Xiaoyue Mu i Lu Li. "Fe-Pt nanoclusters modified Mott-Schottky photocatalysts for enhanced ammonia synthesis at ambient conditions". Applied Catalysis B: Environmental 262 (marzec 2020): 118276. http://dx.doi.org/10.1016/j.apcatb.2019.118276.
Pełny tekst źródłaShang, Wenxue, Yi Xiao, Airu Yu, Hongxia Shen, Qiong Cheng, Yantao Sun, Liqiu Zhang, Lichun Liu i Lihua Li. "Visible-Light-Enhanced Electrocatalytic Hydrogen Evolution Using Electrodeposited Molybdenum Oxide". Journal of The Electrochemical Society 169, nr 3 (1.03.2022): 034529. http://dx.doi.org/10.1149/1945-7111/ac5d94.
Pełny tekst źródłaZhang, Shengbo, Mei Li, Jiankang Zhao, Hua Wang, Xinli Zhu, Jinyu Han i Xiao Liu. "Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde". Applied Catalysis B: Environmental 252 (wrzesień 2019): 24–32. http://dx.doi.org/10.1016/j.apcatb.2019.04.013.
Pełny tekst źródłaDong, Qing, Gangjian Li, Fangfang Liu, Jianwei Ren, Hui Wang i Rongfang Wang. "Cu nanoclusters activating ultrafine Fe3N nanoparticles via the Mott-Schottky effect for rechargeable zinc-air batteries". Applied Catalysis B: Environmental 326 (czerwiec 2023): 122415. http://dx.doi.org/10.1016/j.apcatb.2023.122415.
Pełny tekst źródłaIsmael, Mohammed, i Michael Wark. "Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation". Catalysts 9, nr 4 (8.04.2019): 342. http://dx.doi.org/10.3390/catal9040342.
Pełny tekst źródłaThanh Thuy, Chau Thi, Gyuho Shin, Lee Jieun, Hyung Do Kim, Ganesh Koyyada i Jae Hong Kim. "Self-Doped Carbon Dots Decorated TiO2 Nanorods: A Novel Synthesis Route for Enhanced Photoelectrochemical Water Splitting". Catalysts 12, nr 10 (20.10.2022): 1281. http://dx.doi.org/10.3390/catal12101281.
Pełny tekst źródłaWei, Qinhong, Jiashi Wang i Wenzhong Shen. "Atomically dispersed Feδ+ anchored on nitrogen-rich carbon for enhancing benzyl alcohol oxidation through Mott-Schottky effect". Applied Catalysis B: Environmental 292 (wrzesień 2021): 120195. http://dx.doi.org/10.1016/j.apcatb.2021.120195.
Pełny tekst źródłaZhang, Pengfei, Yaoda Liu, Tingting Liang, Edison Huixiang Ang, Xu Zhang, Fei Ma i Zhengfei Dai. "Nitrogen-doped carbon wrapped Co-Mo2C dual Mott–Schottky nanosheets with large porosity for efficient water electrolysis". Applied Catalysis B: Environmental 284 (maj 2021): 119738. http://dx.doi.org/10.1016/j.apcatb.2020.119738.
Pełny tekst źródłaHe, Tianwei, Gurpreet Kour, Xin Mao i Aijun Du. "Cuδ+ active sites stabilization through Mott-Schottky effect for promoting highly efficient conversion of carbon monoxide into n-propanol". Journal of Catalysis 382 (luty 2020): 49–56. http://dx.doi.org/10.1016/j.jcat.2019.12.015.
Pełny tekst źródłaLi, Zhen, Ligong Zhai, Tingting Ma, Jinfeng Zhang i Zhenghua Wang. "Efficient and Stable Catalytic Hydrogen Evolution of ZrO2/CdSe-DETA Nanocomposites under Visible Light". Catalysts 12, nr 11 (8.11.2022): 1385. http://dx.doi.org/10.3390/catal12111385.
Pełny tekst źródłaLiu, Bo, Tong Xu, Chunping Li i Jie Bai. "Activating Pd nanoparticles via the Mott-Schottky effect in Ni doped CeO2 nanotubes for enhanced catalytic Suzuki reaction". Molecular Catalysis 528 (sierpień 2022): 112452. http://dx.doi.org/10.1016/j.mcat.2022.112452.
Pełny tekst źródłaNkwachukwu, Oluchi V., Charles Muzenda, Babatope O. Ojo, Busisiwe N. Zwane, Babatunde A. Koiki, Benjamin O. Orimolade, Duduzile Nkosi, Nonhlangabezo Mabuba i Omotayo A. Arotiba. "Photoelectrochemical Degradation of Organic Pollutants on a La3+ Doped BiFeO3 Perovskite". Catalysts 11, nr 9 (2.09.2021): 1069. http://dx.doi.org/10.3390/catal11091069.
Pełny tekst źródłaKoh, Tae Sik, Periyasamy Anushkkaran, Jun Beom Hwang, Sun Hee Choi, Weon-Sik Chae, Hyun Hwi Lee i Jum Suk Jang. "Magnetron Sputtered Al Co-Doped with Zr-Fe2O3 Photoanode with Fortuitous Al2O3 Passivation Layer to Lower the Onset Potential for Photoelectrochemical Solar Water Splitting". Catalysts 12, nr 11 (18.11.2022): 1467. http://dx.doi.org/10.3390/catal12111467.
Pełny tekst źródłaZhang, Quan, Fang Luo, Xue Long, Xinxin Yu, Konggang Qu i Zehui Yang. "N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries". Applied Catalysis B: Environmental 298 (grudzień 2021): 120511. http://dx.doi.org/10.1016/j.apcatb.2021.120511.
Pełny tekst źródła