Artykuły w czasopismach na temat „MoTe2-MoS2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „MoTe2-MoS2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhu, Xuesong, Dahao Wu, Shengzhi Liang i Jing Liu. "Strain insensitive flexible photodetector based on molybdenum ditelluride/molybdenum disulfide heterostructure". Nanotechnology 34, nr 15 (3.02.2023): 155502. http://dx.doi.org/10.1088/1361-6528/acb359.
Pełny tekst źródłaGrajcarova, Liliana, Michaela Riflikova, Roman Martonak i Erio Tosatti. "Structural and electronic behaviour of MoS2, MoSe2and MoTe2at high pressure". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1619. http://dx.doi.org/10.1107/s2053273314083806.
Pełny tekst źródłaPark, Do-Hyun, i Hyo Chan Lee. "Photogating Effect of Atomically Thin Graphene/MoS2/MoTe2 van der Waals Heterostructures". Micromachines 14, nr 1 (4.01.2023): 140. http://dx.doi.org/10.3390/mi14010140.
Pełny tekst źródłaHibino, Y., S. Ishihara, N. Sawamoto, T. Ohashi, K. Matsuura, H. Machida, M. Ishikawa, H. Sudo, H. Wakabayashi i A. Ogura. "Investigation on MoS2(1-x)Te2x Mixture Alloy Fabricated by Co-sputtering Deposition". MRS Advances 2, nr 29 (2017): 1557–62. http://dx.doi.org/10.1557/adv.2017.125.
Pełny tekst źródłaChikukwa, Evernice, Edson Meyer, Johannes Mbese i Nyengerai Zingwe. "Colloidal Synthesis and Characterization of Molybdenum Chalcogenide Quantum Dots Using a Two-Source Precursor Pathway for Photovoltaic Applications". Molecules 26, nr 14 (9.07.2021): 4191. http://dx.doi.org/10.3390/molecules26144191.
Pełny tekst źródłaZazpe, Raul, Hanna Sopha, Jhonatan Rodriguez Pereira i Jan M. Macak. "Electrocatalytic Applications of 2D Molybdenum Dichalcogenides By Atomic Layer Deposition". ECS Meeting Abstracts MA2022-02, nr 31 (9.10.2022): 1150. http://dx.doi.org/10.1149/ma2022-02311150mtgabs.
Pełny tekst źródłaMirabelli, Gioele, Conor McGeough, Michael Schmidt, Eoin K. McCarthy, Scott Monaghan, Ian M. Povey, Melissa McCarthy i in. "Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2". Journal of Applied Physics 120, nr 12 (28.09.2016): 125102. http://dx.doi.org/10.1063/1.4963290.
Pełny tekst źródłaBalaji, Yashwanth, Dan Mocuta, Guido Groeseneken, Quentin Smets, Cesar Javier Lockhart De La Rosa, Anh Khoa Augustin Lu, Daniele Chiappe i in. "Tunneling Transistors Based on MoS2/MoTe2 Van der Waals Heterostructures". IEEE Journal of the Electron Devices Society 6 (2018): 1048–55. http://dx.doi.org/10.1109/jeds.2018.2815781.
Pełny tekst źródłaLi, Shangdong, Zhenbei He, Yizhen Ke, Junxiong Guo, Tiedong Cheng, Tianxun Gong, Yuan Lin, Zhiwei Liu, Wen Huang i Xiaosheng Zhang. "Ultra-sensitive self-powered photodetector based on vertical MoTe2/MoS2 heterostructure". Applied Physics Express 13, nr 1 (17.12.2019): 015007. http://dx.doi.org/10.7567/1882-0786/ab5e72.
Pełny tekst źródłaPan, Shudi, Pavel Valencia-Acuna, Weijin Kong, Jianhua Liu, Xiaohui Ge, Wanfeng Xie i Hui Zhao. "Efficient interlayer electron transfer in a MoTe2/WS2/MoS2 trilayer heterostructure". Applied Physics Letters 118, nr 25 (21.06.2021): 253106. http://dx.doi.org/10.1063/5.0047909.
Pełny tekst źródłaBurton, B. P., i A. K. Singh. "Prediction of entropy stabilized incommensurate phases in the system MoS2−MoTe2". Journal of Applied Physics 120, nr 15 (21.10.2016): 155101. http://dx.doi.org/10.1063/1.4964868.
Pełny tekst źródłaHu, Ruixue, Enxiu Wu, Yuan Xie i Jing Liu. "Multifunctional anti-ambipolar p-n junction based on MoTe2/MoS2 heterostructure". Applied Physics Letters 115, nr 7 (12.08.2019): 073104. http://dx.doi.org/10.1063/1.5109221.
Pełny tekst źródłaYao, Hao, Enxiu Wu i Jing Liu. "Frequency doubler based on a single MoTe2/MoS2 anti-ambipolar heterostructure". Applied Physics Letters 117, nr 12 (21.09.2020): 123103. http://dx.doi.org/10.1063/5.0018882.
Pełny tekst źródłaFang, Qiyi, Zhepeng Zhang, Qingqing Ji, Siya Zhu, Yue Gong, Yu Zhang, Jianping Shi i in. "Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route". Nano Research 10, nr 8 (20.04.2017): 2761–71. http://dx.doi.org/10.1007/s12274-017-1480-z.
Pełny tekst źródłaWang, Feng, Lei Yin, Zhen Xing Wang, Kai Xu, Feng Mei Wang, Tofik Ahmed Shifa, Yun Huang, Chao Jiang i Jun He. "Configuration-Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2". Advanced Functional Materials 26, nr 30 (30.05.2016): 5499–506. http://dx.doi.org/10.1002/adfm.201601349.
Pełny tekst źródłaChen, Yan, Xudong Wang, Guangjian Wu, Zhen Wang, Hehai Fang, Tie Lin, Shuo Sun i in. "High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure". Small 14, nr 9 (22.01.2018): 1703293. http://dx.doi.org/10.1002/smll.201703293.
Pełny tekst źródłaQuan, Chenjing, Chunhui Lu, Chuan He, Xiang Xu, Yuanyuan Huang, Qiyi Zhao i Xinlong Xu. "Band Alignment of MoTe2 /MoS2 Nanocomposite Films for Enhanced Nonlinear Optical Performance". Advanced Materials Interfaces 6, nr 5 (13.01.2019): 1801733. http://dx.doi.org/10.1002/admi.201801733.
Pełny tekst źródłaHibino, Yusuke, Kota Yamazaki, Yusuke Hashimoto, Yuya Oyanagi, Naomi Sawamoto, Hideaki Machida, Masato Ishikawa, Hiroshi Sudo, Hitoshi Wakabayashi i Atsushi Ogura. "The Physical and Chemical Properties of MoS2(1-x)Te2x Alloy Synthesized by Co-sputtering and Chalcogenization and Their Dependence on Fabrication Conditions". MRS Advances 5, nr 31-32 (2020): 1635–42. http://dx.doi.org/10.1557/adv.2020.170.
Pełny tekst źródłaWang, Jinhua, i Gyaneshwar P. Srivastava. "Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons". Nanomaterials 11, nr 2 (19.02.2021): 534. http://dx.doi.org/10.3390/nano11020534.
Pełny tekst źródłaDiCamillo, Kyle, Sergiy Krylyuk, Wendy Shi, Albert Davydov i Makarand Paranjape. "Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for Two-Dimensional Materials Applications". IEEE Transactions on Nanotechnology 18 (2019): 144–48. http://dx.doi.org/10.1109/tnano.2018.2868672.
Pełny tekst źródłaDuong, Ngoc Thanh, Juchan Lee, Seungho Bang, Chulho Park, Seong Chu Lim i Mun Seok Jeong. "Modulating the Functions of MoS2/MoTe2 van der Waals Heterostructure via Thickness Variation". ACS Nano 13, nr 4 (2.04.2019): 4478–85. http://dx.doi.org/10.1021/acsnano.9b00014.
Pełny tekst źródłaWu, Enxiu, Yuan Xie, Qingzhou Liu, Xiaodong Hu, Jing Liu, Daihua Zhang i Chongwu Zhou. "Photoinduced Doping To Enable Tunable and High-Performance Anti-Ambipolar MoTe2/MoS2 Heterotransistors". ACS Nano 13, nr 5 (11.04.2019): 5430–38. http://dx.doi.org/10.1021/acsnano.9b00201.
Pełny tekst źródłaHussain, Sajjad, Supriya A. Patil, Dhanasekaran Vikraman, Iqra Rabani, Alvira Ayoub Arbab, Sung Hoon Jeong, Hyun-Seok Kim, Hyosung Choi i Jongwan Jung. "Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells". Applied Surface Science 504 (luty 2020): 144401. http://dx.doi.org/10.1016/j.apsusc.2019.144401.
Pełny tekst źródłaFan, Xaiofeng, David J. Singh, Q. Jiang i W. T. Zheng. "Pressure evolution of the potential barriers of phase transition of MoS2, MoSe2 and MoTe2". Physical Chemistry Chemical Physics 18, nr 17 (2016): 12080–85. http://dx.doi.org/10.1039/c6cp00715e.
Pełny tekst źródłaDeGregorio, Zachary P., Youngdong Yoo i James E. Johns. "Aligned MoO2/MoS2 and MoO2/MoTe2 Freestanding Core/Shell Nanoplates Driven by Surface Interactions". Journal of Physical Chemistry Letters 8, nr 7 (24.03.2017): 1631–36. http://dx.doi.org/10.1021/acs.jpclett.7b00307.
Pełny tekst źródłaLi, Chao, Xiao Yan, Xiongfei Song, Wenzhong Bao, Shijin Ding, David Wei Zhang i Peng Zhou. "WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment". Nanotechnology 28, nr 41 (13.09.2017): 415201. http://dx.doi.org/10.1088/1361-6528/aa810f.
Pełny tekst źródłaZribi, Rayhane, i Giovanni Neri. "Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules". Sensors 20, nr 18 (21.09.2020): 5404. http://dx.doi.org/10.3390/s20185404.
Pełny tekst źródłaAhuja, Ushma, Ritu Joshi, D. C. Kothari, Harpal Tiwari i K. Venugopalan. "Optical Response of Mixed Molybdenum Dichalcogenides for Solar Cell Applications Using the Modified Becke–Johnson Potential". Zeitschrift für Naturforschung A 71, nr 3 (1.03.2016): 213–23. http://dx.doi.org/10.1515/zna-2015-0393.
Pełny tekst źródłaDu, Wanying, Xionghui Jia, Zhixuan Cheng, Wanjing Xu, Yanping Li i Lun Dai. "Low-power-consumption CMOS inverter array based on CVD-grown p-MoTe2 and n-MoS2". iScience 24, nr 12 (grudzień 2021): 103491. http://dx.doi.org/10.1016/j.isci.2021.103491.
Pełny tekst źródłaDing, Yao, Nan Zhou, Lin Gan, Xingxu Yan, Ruizhe Wu, Irfan H. Abidi, Aashir Waleed i in. "Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors". Nano Energy 49 (lipiec 2018): 200–208. http://dx.doi.org/10.1016/j.nanoen.2018.04.055.
Pełny tekst źródłaShang, Ju Ying, Michael J. Moody, Jiazhen Chen, Sergiy Krylyuk, Albert V. Davydov, Tobin J. Marks i Lincoln J. Lauhon. "In Situ Transport Measurements Reveal Source of Mobility Enhancement of MoS2 and MoTe2 during Dielectric Deposition". ACS Applied Electronic Materials 2, nr 5 (21.04.2020): 1273–79. http://dx.doi.org/10.1021/acsaelm.0c00085.
Pełny tekst źródłaZhang, Kenan, Tianning Zhang, Guanghui Cheng, Tianxin Li, Shuxia Wang, Wei Wei, Xiaohao Zhou i in. "Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures". ACS Nano 10, nr 3 (9.03.2016): 3852–58. http://dx.doi.org/10.1021/acsnano.6b00980.
Pełny tekst źródłaGeng, W. T., V. Wang, Y. C. Liu, T. Ohno i J. Nara. "Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer". Journal of Physical Chemistry Letters 11, nr 7 (18.03.2020): 2637–46. http://dx.doi.org/10.1021/acs.jpclett.0c00605.
Pełny tekst źródłaChen, Yan, Xudong Wang, Guangjian Wu, Zhen Wang, Hehai Fang, Tie Lin, Shuo Sun i in. "Optoelectronics: High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure (Small 9/2018)". Small 14, nr 9 (marzec 2018): 1870038. http://dx.doi.org/10.1002/smll.201870038.
Pełny tekst źródłaWang, Bin, Shengxue Yang, Cong Wang, Minghui Wu, Li Huang, Qian Liu i Chengbao Jiang. "Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions". Nanoscale 9, nr 30 (2017): 10733–40. http://dx.doi.org/10.1039/c7nr03445h.
Pełny tekst źródłaDuong, Ngoc Thanh, Seungho Bang, Seung Mi Lee, Dang Xuan Dang, Dong Hoon Kuem, Juchan Lee, Mun Seok Jeong i Seong Chu Lim. "Parameter control for enhanced peak-to-valley current ratio in a MoS2/MoTe2 van der Waals heterostructure". Nanoscale 10, nr 26 (2018): 12322–29. http://dx.doi.org/10.1039/c8nr01711e.
Pełny tekst źródłaCristiano, Michele N., Ted V. Tsoulos i Laura Fabris. "Quantifying and optimizing photocurrent via optical modeling of gold nanostar-, nanorod-, and dimer-decorated MoS2 and MoTe2". Journal of Chemical Physics 152, nr 1 (7.01.2020): 014705. http://dx.doi.org/10.1063/1.5127279.
Pełny tekst źródłaAmory, C., J. C. Bernède i N. Hamdadou. "A study of textured non-stoichiometric MoTe2 thin films used as substrates for textured stoichiometric MoS2 thin films". Vacuum 72, nr 4 (styczeń 2004): 351–61. http://dx.doi.org/10.1016/j.vacuum.2003.09.001.
Pełny tekst źródłaAhn, Jongtae, Ji-Hoon Kang, Jihoon Kyhm, Hyun Tae Choi, Minju Kim, Dae-Hwan Ahn, Dae-Yeon Kim i in. "Self-Powered Visible–Invisible Multiband Detection and Imaging Achieved Using High-Performance 2D MoTe2/MoS2 Semivertical Heterojunction Photodiodes". ACS Applied Materials & Interfaces 12, nr 9 (10.02.2020): 10858–66. http://dx.doi.org/10.1021/acsami.9b22288.
Pełny tekst źródłaKhan, Md Azmot Ullah, Naheem Olakunle Adesina i Jian Xu. "Near Unity Absorbance and Photovoltaic Properties of TMDC/Gold Heterojunction for Solar Cell Application". Key Engineering Materials 918 (25.04.2022): 97–105. http://dx.doi.org/10.4028/p-uz62m4.
Pełny tekst źródłaKhan, Md Azmot Ullah, Naheem Olakunle Adesina i Jian Xu. "Near Unity Absorbance and Photovoltaic Properties of TMDC/Gold Heterojunction for Solar Cell Application". Key Engineering Materials 918 (25.04.2022): 97–105. http://dx.doi.org/10.4028/p-uz62m4.
Pełny tekst źródłaLate, Dattatray J., i Claudia Wiemer. "Advances in low dimensional and 2D materials". AIP Advances 12, nr 11 (1.11.2022): 110401. http://dx.doi.org/10.1063/5.0129120.
Pełny tekst źródłaGomes, Anderson S. L., Cecília L. A. V. Campos, Cid B. de Araújo, Melissa Maldonado, Manoel L. da Silva-Neto, Ali M. Jawaid, Robert Busch i Richard A. Vaia. "Intensity-Dependent Optical Response of 2D LTMDs Suspensions: From Thermal to Electronic Nonlinearities". Nanomaterials 13, nr 15 (7.08.2023): 2267. http://dx.doi.org/10.3390/nano13152267.
Pełny tekst źródłaWang, Yaqian, Yongli Shen, Xiong Xiao, Linxiu Dai, Shuang Yao i Changhua An. "Topology conversion of 1T MoS2 to S-doped 2H-MoTe2 nanosheets with Te vacancies for enhanced electrocatalytic hydrogen evolution". Science China Materials 64, nr 9 (29.03.2021): 2202–11. http://dx.doi.org/10.1007/s40843-020-1612-y.
Pełny tekst źródłaXie, Yuan, Enxiu Wu, Shuangqing Fan, Guangyu Geng, Xiaodong Hu, Linyan Xu, Sen Wu, Jing Liu i Daihua Zhang. "Modulation of MoTe2/MoS2 van der Waals heterojunctions for multifunctional devices using N2O plasma with an opposite doping effect". Nanoscale 13, nr 16 (2021): 7851–60. http://dx.doi.org/10.1039/d0nr08814e.
Pełny tekst źródłaDiaz, Horacio Coy, Yujing Ma, Redhouane Chaghi i Matthias Batzill. "High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2". Applied Physics Letters 108, nr 19 (9.05.2016): 191606. http://dx.doi.org/10.1063/1.4949559.
Pełny tekst źródłaPezeshki, Atiye, Seyed Hossein Hosseini Shokouh, Pyo Jin Jeon, Iman Shackery, Jin Sung Kim, Il-Kwon Oh, Seong Chan Jun, Hyungjun Kim i Seongil Im. "Static and Dynamic Performance of Complementary Inverters Based on Nanosheet α-MoTe2 p-Channel and MoS2 n-Channel Transistors". ACS Nano 10, nr 1 (4.12.2015): 1118–25. http://dx.doi.org/10.1021/acsnano.5b06419.
Pełny tekst źródłaCho, Yongjae, Ji Hoon Park, Minju Kim, Yeonsu Jeong, Sanghyuck Yu, June Yeong Lim, Yeonjin Yi i Seongil Im. "Impact of Organic Molecule-Induced Charge Transfer on Operating Voltage Control of Both n-MoS2 and p-MoTe2 Transistors". Nano Letters 19, nr 4 (11.03.2019): 2456–63. http://dx.doi.org/10.1021/acs.nanolett.9b00019.
Pełny tekst źródłaCaturello, Naidel A. M. S., Rafael Besse, Augusto C. H. Da Silva, Diego Guedes-Sobrinho, Matheus P. Lima i Juarez L. F. Da Silva. "Ab Initio Investigation of Atomistic Insights into the Nanoflake Formation of Transition-Metal Dichalcogenides: The Examples of MoS2, MoSe2, and MoTe2". Journal of Physical Chemistry C 122, nr 47 (2.11.2018): 27059–69. http://dx.doi.org/10.1021/acs.jpcc.8b07127.
Pełny tekst źródłaVaradwaj, Pradeep, Helder Marques, Arpita Varadwaj i Koichi Yamashita. "Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides". Inorganics 10, nr 1 (12.01.2022): 11. http://dx.doi.org/10.3390/inorganics10010011.
Pełny tekst źródła