Artykuły w czasopismach na temat „MoS2-rGO”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „MoS2-rGO”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Wenbo, Hao Li, Rong Qian, Shangjun Zhuo, Pengfei Ju i Qiao Chen. "CTAB Enhanced Room-Temperature Detection of NO2 Based on MoS2-Reduced Graphene Oxide Nanohybrid". Nanomaterials 12, nr 8 (11.04.2022): 1300. http://dx.doi.org/10.3390/nano12081300.
Pełny tekst źródłaPan, Shugang, Ning Zhang i Yongsheng Fu. "Preparation of Nanoplatelet-Like MoS2/rGO Composite as High-Performance Anode Material for Lithium-Ion Batteries". Nano 14, nr 03 (marzec 2019): 1950033. http://dx.doi.org/10.1142/s1793292019500334.
Pełny tekst źródłaYang, Cheng, Yanyan Wang, Zhekun Wu, Zhanbo Zhang, Nantao Hu i Changsi Peng. "Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors". Nanomaterials 12, nr 6 (9.03.2022): 901. http://dx.doi.org/10.3390/nano12060901.
Pełny tekst źródłaVerma, Dinesh, Nivedita Shukla, Bharat Kumar, Alok Singh, Kavita Shahu, Mithilesh Yadav, Kyong Rhee i Rashmi Rastogi. "Synergistic Tribo-Activity of Nanohybrids of Zirconia/Cerium-Doped Zirconia Nanoparticles with Nano Lamellar Reduced Graphene Oxide and Molybdenum Disulfide". Nanomaterials 10, nr 4 (8.04.2020): 707. http://dx.doi.org/10.3390/nano10040707.
Pełny tekst źródłaShakya, Jyoti, P. K. Kasana i T. Mohanty. "Investigation of Swift Heavy Ion Irradiated Reduced Graphene Oxide (rGO)/Molybdenum Disulfide (MoS2) Nanocomposite Using Raman Spectroscopy". Journal of Nanoscience and Nanotechnology 20, nr 5 (1.05.2020): 3174–81. http://dx.doi.org/10.1166/jnn.2020.17400.
Pełny tekst źródłaChen, Beibei, Xiang Li, Yuhan Jia, Xiaofang Li, Mingsuo Zhang i Jinze Dong. "Tribological properties of Fe–Ni-based composites with Ni-coated reduced graphene oxide–MoS2". Journal of Composite Materials 52, nr 19 (5.02.2018): 2631–39. http://dx.doi.org/10.1177/0021998317752226.
Pełny tekst źródłaPhan, Thi Thuy Trang, Thi Thanh Huong Nguyen, Ha Tran Huu, Thanh Tam Truong, Le Tuan Nguyen, Van Thang Nguyen, Vy Anh Tran, Thi Lan Nguyen, Hong Lien Nguyen i Vien Vo. "Hydrothermal Synthesis of MoS2/rGO Heterostructures for Photocatalytic Degradation of Rhodamine B under Visible Light". Journal of Nanomaterials 2021 (28.07.2021): 1–11. http://dx.doi.org/10.1155/2021/9941202.
Pełny tekst źródłaLiu, Xuehua, Bingning Wang, Jine Liu, Zhen Kong, Binghui Xu, Yiqian Wang i Hongliang Li. "MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries". Nano 13, nr 11 (listopad 2018): 1850135. http://dx.doi.org/10.1142/s1793292018501357.
Pełny tekst źródłaHa, Enna, Zongyuan Xin, Danyang Li, Jingge Zhang, Tao Ji, Xin Hu, Luyang Wang i Junqing Hu. "Dual-Modified Cu2S with MoS2 and Reduced Graphene Oxides as Efficient Photocatalysts for H2 Evolution Reaction". Catalysts 11, nr 11 (22.10.2021): 1278. http://dx.doi.org/10.3390/catal11111278.
Pełny tekst źródłaWang, Bingning, Xuehua Liu, Binghui Xu, Yanhui Li, Dan Xiu, Peizhi Guo i Hongliang Li. "A Facile One-Pot Stepwise Hydrothermal Method for the Synthesis of 3D MoS2/RGO Composites with Improved Lithium Storage Properties". Nano 14, nr 03 (marzec 2019): 1950037. http://dx.doi.org/10.1142/s1793292019500371.
Pełny tekst źródłaSun, Qihua, Zhaofeng Wu, Haiming Duan i Dianzeng Jia. "Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS2/RGO Composites". Sensors 19, nr 6 (13.03.2019): 1281. http://dx.doi.org/10.3390/s19061281.
Pełny tekst źródłaChoi, Hyeonggeun, Suok Lee, Min-Cheol Kim, Yeonsu Park, A.-Rang Jang, Wook Ahn, Jung Inn Sohn, Jong Bae Park, John Hong i Young-Woo Lee. "Hierarchically Ordinated Two-Dimensional MoS2 Nanosheets on Three-Dimensional Reduced Graphene Oxide Aerogels as Highly Active and Stable Catalysts for Hydrogen Evolution Reaction". Catalysts 11, nr 2 (30.01.2021): 182. http://dx.doi.org/10.3390/catal11020182.
Pełny tekst źródłaOng, Wei, Ho Mui Yen, Peck Loo Kiew, Teck Hock Lim, Khok Lun Leong, Shuan Yao Tan i Jin Xiang Lim. "In<sub>2</sub>O<sub>3</sub>/MoS<sub>2</sub>/Reduced Graphene Oxide Nanostructure as Composite Electrodes for Supercapacitors". Key Engineering Materials 936 (14.12.2022): 63–71. http://dx.doi.org/10.4028/p-bb4r2i.
Pełny tekst źródłaWu, Yanju, Didi Liu, Jiahua Guo i Fei Wang. "A molybdenum disulfide-reduced graphene oxide nanocomposite as an electrochemical sensing platform for detecting cyproterone acetate". New Journal of Chemistry 46, nr 11 (2022): 5385–92. http://dx.doi.org/10.1039/d1nj05225j.
Pełny tekst źródłaTian, Chengxiang, Juwei Wu, Zheng Ma, Bo Li, Pengcheng Li, Xiaotao Zu i Xia Xiang. "Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance". Beilstein Journal of Nanotechnology 10 (14.11.2019): 2251–60. http://dx.doi.org/10.3762/bjnano.10.217.
Pełny tekst źródłaLiu, Shixing, Xingnan Liu, Baozhu Xie, Xin Liu i Haibing Hu. "Highly Sensitive Electrochemical Pb(II) Sensors Based on MoS2/rGO Nanocomposites by Square Wave Voltammetry". Journal of The Electrochemical Society 169, nr 7 (1.07.2022): 077509. http://dx.doi.org/10.1149/1945-7111/ac8020.
Pełny tekst źródłaReddy, Bhumi Reddy Srinivasulu, Mookala Premasudha, Yeon-Ju Lee, Hyo-Jun Ahn, Nagireddy Gari Subba Reddy, Jou-Hyeon Ahn i Kwon-Koo Cho. "Synthesis and Electrochemical Properties of MoS2/rGO/S Composite as a Cathode Material for Lithium–Sulfur Batteries". Journal of Nanoscience and Nanotechnology 20, nr 11 (1.11.2020): 7087–91. http://dx.doi.org/10.1166/jnn.2020.18826.
Pełny tekst źródłaLiu, Guangsheng, Kunyapat Thummavichai, Xuefeng Lv, Wenting Chen, Tingjun Lin, Shipeng Tan, Minli Zeng, Yu Chen, Nannan Wang i Yanqiu Zhu. "Defect-Rich Heterogeneous MoS2/rGO/NiS Nanocomposite for Efficient pH-Universal Hydrogen Evolution". Nanomaterials 11, nr 3 (8.03.2021): 662. http://dx.doi.org/10.3390/nano11030662.
Pełny tekst źródłaWu, Huaping, Ye Qiu, Junma Zhang, Guozhong Chai, Congda Lu i Aiping Liu. "One-step hydrothermal synthesis of NiS/MoS2-rGO composites and their application as catalysts for hydrogen evolution reaction". Functional Materials Letters 09, nr 05 (październik 2016): 1650058. http://dx.doi.org/10.1142/s1793604716500582.
Pełny tekst źródłaTrang Phan, Thi Thuy, Thanh Tam Truong, Ha Tran Huu, Le Tuan Nguyen, Van Thang Nguyen, Hong Lien Nguyen i Vien Vo. "Visible Light-Driven Mn-MoS2/rGO Composite Photocatalysts for the Photocatalytic Degradation of Rhodamine B". Journal of Chemistry 2020 (13.08.2020): 1–10. http://dx.doi.org/10.1155/2020/6285484.
Pełny tekst źródłaYao, Gabriel Tan Shuan, Ho Mui Yen, Leong Khok Lun, Ong Wei i Lim Jin Xiang. "Synthesis of Graphene/Silver/Molybdenum Disulphide Composite for Supercapacitor Application". Materials Science Forum 1054 (24.02.2022): 21–30. http://dx.doi.org/10.4028/p-u48e5d.
Pełny tekst źródłaBai, Xiaoyan, Tianqi Cao, Tianyu Xia, Chenxiao Wu, Menglin Feng, Xinru Li, Ziqing Mei i in. "MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting". Nanomaterials 13, nr 4 (16.02.2023): 752. http://dx.doi.org/10.3390/nano13040752.
Pełny tekst źródłaCho, Su-Ho, Jong-Heon Kim, Il-Gyu Kim, Jeong-Ho Park, Ji-Won Jung, Hyun-Suk Kim i Il-Doo Kim. "Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries". Nanomaterials 11, nr 10 (13.10.2021): 2691. http://dx.doi.org/10.3390/nano11102691.
Pełny tekst źródłaCho, Su-Ho, Jong-Heon Kim, Il-Gyu Kim, Jeong-Ho Park, Ji-Won Jung, Hyun-Suk Kim i Il-Doo Kim. "Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries". Nanomaterials 11, nr 10 (13.10.2021): 2691. http://dx.doi.org/10.3390/nano11102691.
Pełny tekst źródłaPhan Thi Thuy, Trang, Tam Truong Thanh, Vien Vo i Lien Nguyen Hong. "Study on the adsorption of Rhodamine B on MoS2/RGO composite". Vietnam Journal of Catalysis and Adsorption 9, nr 4 (31.12.2020): 57–63. http://dx.doi.org/10.51316/jca.2020.070.
Pełny tekst źródłaMachín, Abniel, Loraine Soto-Vázquez, Diego García, María C. Cotto, Dayna Ortiz, Pedro J. Berríos-Rolón, Kenneth Fontánez i in. "Photodegradation of Ciprofloxacin and Levofloxacin by Au@ZnONPs-MoS2-rGO Nanocomposites". Catalysts 13, nr 3 (7.03.2023): 538. http://dx.doi.org/10.3390/catal13030538.
Pełny tekst źródłaManoharan, Anishkumar, Z. Ryan Tian i Simon S. Ang. "MoS2/Reduced Graphene Oxide-Based 2D Nancomposites for Boosting the Energy Density of Electric Double-Layer Capacitor". MRS Advances 1, nr 22 (2016): 1619–24. http://dx.doi.org/10.1557/adv.2016.140.
Pełny tekst źródłaRen, Zhe, Yunbo Shi, Tianming Song, Tian Wang, Bolun Tang, Haodong Niu i Xiaoyu Yu. "Flexible Low-Temperature Ammonia Gas Sensor Based on Reduced Graphene Oxide and Molybdenum Disulfide". Chemosensors 9, nr 12 (7.12.2021): 345. http://dx.doi.org/10.3390/chemosensors9120345.
Pełny tekst źródłaZhang, Zhi, Xuliang Lv, Yiwang Chen, Pin Zhang, Mingxu Sui, Hui Liu i Xiaodong Sun. "NiS2@MoS2 Nanospheres Anchored on Reduced Graphene Oxide: A Novel Ternary Heterostructure with Enhanced Electromagnetic Absorption Property". Nanomaterials 9, nr 2 (19.02.2019): 292. http://dx.doi.org/10.3390/nano9020292.
Pełny tekst źródłaAtes, Murat. "CuO and MoS2 difference including S -rGO and PPy nanocomposite for SupercapBattery device". International Conference on Scientific and Innovative Studies 1, nr 1 (14.04.2023): 387–91. http://dx.doi.org/10.59287/icsis.630.
Pełny tekst źródłaSreedhara, M. B., A. L. Santhosha, Aninda J. Bhattacharyya i C. N. R. Rao. "Composite of few-layer MoO3nanosheets with graphene as a high performance anode for sodium-ion batteries". Journal of Materials Chemistry A 4, nr 24 (2016): 9466–71. http://dx.doi.org/10.1039/c6ta02561g.
Pełny tekst źródłaGupta, Jyoti, Prachi Singhal i S. Sunita Rattan. "Microwave Assisted Synthesis of Molybdenum Disulphide/Tungsten Trioxide/Reduced Graphene Oxide (MoS2/WO3/RGO) Nanocomposites for Organic Vapor Sensing". IOP Conference Series: Materials Science and Engineering 1225, nr 1 (1.02.2022): 012001. http://dx.doi.org/10.1088/1757-899x/1225/1/012001.
Pełny tekst źródłaPeng, Gang, Xu Zhang, Kaiwen Zhang, Xiaojun Chen i He Huang. "A Novel Ochratoxin A Aptasensor Based on Three-Dimensionally Ordered Macroporous RGO-AuNPs-MoS2 Enhanced Electrocatalysis of Methylene Blue and AuNPs-Fe3O4@C Composite as Signal Probe Carrier". Catalysts 13, nr 7 (11.07.2023): 1088. http://dx.doi.org/10.3390/catal13071088.
Pełny tekst źródłaChen, Xue, i Yongcun Pei. "Application of Graphene-Based Nanocomposites in Electrochemical Detection of Heavy Metal Ions". Science of Advanced Materials 12, nr 3 (1.03.2020): 435–40. http://dx.doi.org/10.1166/sam.2020.3607.
Pełny tekst źródłaXu, Lei, Zhipeng Gong, Yinglin Qiu, Wenbo Wu, Zunxian Yang, Bingqing Ye, Yuliang Ye i in. "Superstructure MOF as a framework to composite MoS2 with rGO for Li/Na-ion battery storage with high-performance and stability". Dalton Transactions 51, nr 9 (2022): 3472–84. http://dx.doi.org/10.1039/d1dt03949k.
Pełny tekst źródłaCravanzola, Sara, Federico Cesano, Giuliana Magnacca, Adriano Zecchina i Domenica Scarano. "Designing rGO/MoS2 hybrid nanostructures for photocatalytic applications". RSC Advances 6, nr 64 (2016): 59001–8. http://dx.doi.org/10.1039/c6ra08633k.
Pełny tekst źródłaMuniyappa, Murthy, Mahesh Shastri, Manjunath Shetty, Vinay Gangaraju, Jagadeesh Babu Sriramoju, Sindhushree Muralidhar, Manikanta P. Narayanaswamy i in. "Exfoliation of MoS2-RGO Hybrid 2D Sheets by Supercritical Fluid Process". Asian Journal of Chemistry 34, nr 4 (2022): 1009–14. http://dx.doi.org/10.14233/ajchem.2022.23707.
Pełny tekst źródłaZhou, Jing, Han Xiao, Bowen Zhou, Feifan Huang, Shoubin Zhou, Wei Xiao i Dihua Wang. "Hierarchical MoS2–rGO nanosheets with high MoS2 loading with enhanced electro-catalytic performance". Applied Surface Science 358 (grudzień 2015): 152–58. http://dx.doi.org/10.1016/j.apsusc.2015.07.187.
Pełny tekst źródłaLi, Xian, Jing Wang, Dan Xie, Jianlong Xu, Yi Xia, Weiwei Li, Lan Xiang, Zhemin Li, Shiwei Xu i Sridhar Komarneni. "Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film". Nanotechnology 28, nr 32 (18.07.2017): 325501. http://dx.doi.org/10.1088/1361-6528/aa79e6.
Pełny tekst źródłaPatil, D. R., K. M. Sarode, D. M. Nerkar, U. D. Patil, S. G. Bachhav, Ulhas S. Sonawane i Neetu Paliwal. "Sonocatalytic Degradation of Methylene Blue by MoS2-RGO Nanocomposites". Russian Journal of Physical Chemistry A 95, nr 12 (grudzień 2021): 2530–37. http://dx.doi.org/10.1134/s0036024421120153.
Pełny tekst źródłaSelvamani, P. Stephen, J. Judith Vijaya, L. John Kennedy, B. Saravanakumar i M. Bououdina. "High-performance supercapacitor based on Cu2O/MoS2/rGO nanocomposite". Materials Letters 275 (wrzesień 2020): 128095. http://dx.doi.org/10.1016/j.matlet.2020.128095.
Pełny tekst źródłaChe, Zongzhou, Yafeng Li, Kaixiang Chen i Mingdeng Wei. "Hierarchical MoS2@RGO nanosheets for high performance sodium storage". Journal of Power Sources 331 (listopad 2016): 50–57. http://dx.doi.org/10.1016/j.jpowsour.2016.08.139.
Pełny tekst źródłaSun, Qian, Hui Miao, Xiaoyun Hu, Guowei Zhang, Dekai Zhang, Enzhou Liu, Yuanyuan Hao, Xixi Liu i Jun Fan. "Preparation of MoS2/RGO nano heterojunction and photoelectric property". Journal of Materials Science: Materials in Electronics 27, nr 5 (22.01.2016): 4665–71. http://dx.doi.org/10.1007/s10854-016-4345-4.
Pełny tekst źródłaZardkhoshoui, Akbar Mohammadi, i Saied Saeed Hosseiny Davarani. "Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density". Journal of Electroanalytical Chemistry 827 (październik 2018): 221–29. http://dx.doi.org/10.1016/j.jelechem.2018.08.023.
Pełny tekst źródłaWu, Zhikang, Feifei Li, Xiya Li, Yang Yang, Xiao Huang i Hai Li. "Direct Synthesis of MoS2 Nanosheets in Reduced Graphene Oxide Nanoscroll for Enhanced Photodetection". Nanomaterials 12, nr 9 (6.05.2022): 1581. http://dx.doi.org/10.3390/nano12091581.
Pełny tekst źródłaKumar, Sriram, Prasanta Kumar Sahoo i Ashis Kumar Satpati. "Electrochemical and SECM Investigation of MoS2/GO and MoS2/rGO Nanocomposite Materials for HER Electrocatalysis". ACS Omega 2, nr 11 (2.11.2017): 7532–45. http://dx.doi.org/10.1021/acsomega.7b00678.
Pełny tekst źródłaZhang, Kui, Mingquan Ye, Aijun Han i Jiling Yang. "Preparation, characterization and microwave absorbing properties of MoS2 and MoS2 -reduced graphene oxide (RGO) composites". Journal of Solid State Chemistry 277 (wrzesień 2019): 68–76. http://dx.doi.org/10.1016/j.jssc.2019.05.046.
Pełny tekst źródłaHuaning, Jiang, Wang Huaizhang i Liang Ting. "Research Progress of MoS2 Composite rGO Material in Gas Sensor". E3S Web of Conferences 267 (2021): 02048. http://dx.doi.org/10.1051/e3sconf/202126702048.
Pełny tekst źródłaWang, Wei, Olesya O. Kapitanova, Pugazhendi Ilanchezhiyan, Sixing Xi, Gennady N. Panin, Dejun Fu i Tae Won Kang. "Self-assembled MoS2/rGO nanocomposites with tunable UV-IR absorption". RSC Advances 8, nr 5 (2018): 2410–17. http://dx.doi.org/10.1039/c7ra12455d.
Pełny tekst źródłaSaraf, Mohit, Kaushik Natarajan i Shaikh M. Mobin. "Emerging Robust Heterostructure of MoS2–rGO for High-Performance Supercapacitors". ACS Applied Materials & Interfaces 10, nr 19 (26.04.2018): 16588–95. http://dx.doi.org/10.1021/acsami.8b04540.
Pełny tekst źródła