Artykuły w czasopismach na temat „MoS2 Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „MoS2 Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chikukwa, Evernice, Edson Meyer, Johannes Mbese i Nyengerai Zingwe. "Colloidal Synthesis and Characterization of Molybdenum Chalcogenide Quantum Dots Using a Two-Source Precursor Pathway for Photovoltaic Applications". Molecules 26, nr 14 (9.07.2021): 4191. http://dx.doi.org/10.3390/molecules26144191.
Pełny tekst źródłaMandal, Soumen, Rajulapati Vinod Kumar i Nagahanumaiah. "Silver and molybdenum disulfide nanoparticles synthesized in situ in dimethylformamide as dielectric for micro-electro discharge machining". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, nr 5 (30.09.2017): 1594–99. http://dx.doi.org/10.1177/0954405417733019.
Pełny tekst źródłaHu, J. J., J. H. Sanders i J. S. Zabinski. "Synthesis and microstructural characterization of inorganic fullerene-like MoS2 and graphite-MoS2 hybrid nanoparticles". Journal of Materials Research 21, nr 4 (1.04.2006): 1033–40. http://dx.doi.org/10.1557/jmr.2006.0118.
Pełny tekst źródłaLiu, Xianglin, Yongsong Ma, Peng Li, Huayi Yin i Dihua Wang. "Preparation of MoB2 Nanoparticles by Electrolysis of MoS2/B Mixture in Molten NaCl-KCl at 700 °C". Journal of The Electrochemical Society 168, nr 12 (1.12.2021): 123509. http://dx.doi.org/10.1149/1945-7111/ac41f4.
Pełny tekst źródłaHu, Kun Hong, Xian Guo Hu, Xiao Jun Sun, He Feng Jing i Song Zhan. "Synthesis and Characterization of Nanosize Molybdenum Disulfide Particles by Quick Homogeneous Precipitation Method". Key Engineering Materials 353-358 (wrzesień 2007): 2107–10. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.2107.
Pełny tekst źródłaIlie, Filip, i Andreea-Catalina Cristescu. "A Study on the Tribological Behavior of Molybdenum Disulfide Particles as Additives". Coatings 12, nr 9 (25.08.2022): 1244. http://dx.doi.org/10.3390/coatings12091244.
Pełny tekst źródłaGao, Bin, i Xiao Jun Zhang. "Synthesis of MoS2 Nanoparticles with Inorganic Fullerene-Like Structure from Molybdenum Trioxide and Sulfur". Advanced Materials Research 554-556 (lipiec 2012): 601–4. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.601.
Pełny tekst źródłaShi, Shih-Chen, i Shia-Seng Pek. "Third-Body and Dissipation Energy in Green Tribology Film". Applied Sciences 9, nr 18 (10.09.2019): 3787. http://dx.doi.org/10.3390/app9183787.
Pełny tekst źródłaGuo, Jianjun, Bo Yang, Qiang Ma, Sandra Senyo Fometu i Guohua Wu. "Photothermal Regenerated Fibers with Enhanced Toughness: Silk Fibroin/MoS2 Nanoparticles". Polymers 13, nr 22 (15.11.2021): 3937. http://dx.doi.org/10.3390/polym13223937.
Pełny tekst źródłaLee, G. H., J. W. Jeong, S. H. Huh, S. H. Kim, B. J. Choi i Y. W. Kim. "A Simple Synthetic Route to MoS2 and WS2 Nanoparticles and Thin Films". International Journal of Modern Physics B 17, nr 08n09 (10.04.2003): 1134–40. http://dx.doi.org/10.1142/s0217979203018636.
Pełny tekst źródłaHao, Xiaoguang, i Weijing Li. "Molybdenum Dioxide (MoS2)/Gadolinium (Gd) Containing Arginine-Glycine-Aspartic Acid (RGD) Sequences as New Nano-Contrast Agent for Cancer Magnetic Resonance Imaging (MRI)". Journal of Nanoscience and Nanotechnology 21, nr 3 (1.03.2021): 1403–12. http://dx.doi.org/10.1166/jnn.2021.18894.
Pełny tekst źródłaLi, Jingze, Jiaxin Ma, Liu Hong i Cheng Yang. "Prominent antibacterial effect of sub 5 nm Cu nanoparticles/MoS2 composite under visible light". Nanotechnology 33, nr 7 (25.11.2021): 075706. http://dx.doi.org/10.1088/1361-6528/ac3577.
Pełny tekst źródłaCheng, Xiaorong, Yuhua Lu, Shoulin Gu i Graham Dawson. "MoS2/Au-Sensitized TiO2 Nanotube Arrays with Core–Shell Nanostructure for Hydrogen Production". Nano 12, nr 09 (wrzesień 2017): 1750115. http://dx.doi.org/10.1142/s1793292017501156.
Pełny tekst źródłaSamantra, Sonali, i Sirsendu Sekhar Ray. "Heterogeneous Mixture of Nanoparticles from MoS2 and Ta2O5: Synthesis and Characterization". Volume 4,Issue 5,2018 4, nr 5 (31.08.2018): 492–96. http://dx.doi.org/10.30799/jnst.153.18040508.
Pełny tekst źródłaNazir, Asif, Muhammad Suleman Tahir, Ghulam Mustafa Kamal, Xu Zhang, Muhammad Bilal Tahir, Bin Jiang i Muhammad Safdar. "Fabrication of Ternary MoS2/CdS/Bi2S3-Based Nano Composites for Photocatalytic Dye Degradation". Molecules 28, nr 7 (2.04.2023): 3167. http://dx.doi.org/10.3390/molecules28073167.
Pełny tekst źródłaYan, Haochen, Fuqiang Liu, Jinna Zhang i Yanbiao Liu. "Facile Synthesis and Environmental Applications of Noble Metal-Based Catalytic Membrane Reactors". Catalysts 12, nr 8 (5.08.2022): 861. http://dx.doi.org/10.3390/catal12080861.
Pełny tekst źródłaСтовпяга, Е. Ю., Д. А. Курдюков, Д. А. Кириленко, А. Н. Смирнов, А. В. Швидченко, М. А. Яговкина i В. Г. Голубев. "Темплатный метод синтеза монодисперсных наночастиц MoS-=SUB=-2-=/SUB=-". Физика и техника полупроводников 55, nr 5 (2021): 475. http://dx.doi.org/10.21883/ftp.2021.05.50841.9587.
Pełny tekst źródłaJazaa, Yosef, Tian Lan, Sonal Padalkar i Sriram Sundararajan. "The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle Additives in the Boundary Lubrication Regime". Lubricants 6, nr 4 (10.12.2018): 106. http://dx.doi.org/10.3390/lubricants6040106.
Pełny tekst źródłaDong, Pham Quang, Tran Minh Duc, Ngo Minh Tuan, Tran The Long, Dang Van Thanh i Nguyen Van Truong. "Improvement in the Hard Milling of AISI D2 Steel under the MQCL Condition Using Emulsion-Dispersed MoS2 Nanosheets". Lubricants 8, nr 6 (5.06.2020): 62. http://dx.doi.org/10.3390/lubricants8060062.
Pełny tekst źródłaGugulothu, Srinu, i Vamsi Krishna Pasam. "Performance Evaluation of CNT/MoS2 Hybrid Nanofluid in Machining for Surface Roughness". International Journal of Automotive and Mechanical Engineering 16, nr 4 (30.12.2019): 7413–29. http://dx.doi.org/10.15282/ijame.16.4.2019.15.0549.
Pełny tekst źródłaFraih, Ali Jabbar, i Zainab Ali Hrbe. "Enhanced photocatalytic performance of molybdenum disulfide-copper oxide nanoparticles photoanodes". European Physical Journal Applied Physics 96, nr 3 (grudzień 2021): 30102. http://dx.doi.org/10.1051/epjap/2021210192.
Pełny tekst źródłaChai, Hongyan, Xueyong Wang, Zhimin Liu i Yuehan Zhao. "Study on the removal of amyloid plaque by nano-gold in the treatment of neurodegenerative disease-alzheimer’s disease". Materials Express 11, nr 7 (1.07.2021): 1038–44. http://dx.doi.org/10.1166/mex.2021.1992.
Pełny tekst źródłaMkhalid, I. A. "Degradation of Foron Dye by Means of Orderly Dispersion of MoS2 Nanoparticles on Mesoporous ZnO Systems Using Visible Light". Nanoscience and Nanotechnology Letters 11, nr 11 (1.11.2019): 1531–39. http://dx.doi.org/10.1166/nnl.2019.3040.
Pełny tekst źródłaHa, Enna, Zongyuan Xin, Danyang Li, Jingge Zhang, Tao Ji, Xin Hu, Luyang Wang i Junqing Hu. "Dual-Modified Cu2S with MoS2 and Reduced Graphene Oxides as Efficient Photocatalysts for H2 Evolution Reaction". Catalysts 11, nr 11 (22.10.2021): 1278. http://dx.doi.org/10.3390/catal11111278.
Pełny tekst źródłaLi, Dikun, Hua Lu, Yangwu Li, Shouhao Shi, Zengji Yue i Jianlin Zhao. "Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle". Nanophotonics 11, nr 5 (21.01.2022): 995–1001. http://dx.doi.org/10.1515/nanoph-2021-0685.
Pełny tekst źródłaVerma, Dinesh, Nivedita Shukla, Bharat Kumar, Alok Singh, Kavita Shahu, Mithilesh Yadav, Kyong Rhee i Rashmi Rastogi. "Synergistic Tribo-Activity of Nanohybrids of Zirconia/Cerium-Doped Zirconia Nanoparticles with Nano Lamellar Reduced Graphene Oxide and Molybdenum Disulfide". Nanomaterials 10, nr 4 (8.04.2020): 707. http://dx.doi.org/10.3390/nano10040707.
Pełny tekst źródłaLi, Tingting, Zhuhong Wang, Chaochao Liu, Chunmin Tang, Xinkai Wang, Gongsheng Ding, Yichun Ding i Lixia Yang. "TiO2 Nanotubes/Ag/MoS2 Meshy Photoelectrode with Excellent Photoelectrocatalytic Degradation Activity for Tetracycline Hydrochloride". Nanomaterials 8, nr 9 (27.08.2018): 666. http://dx.doi.org/10.3390/nano8090666.
Pełny tekst źródłaDrozdov, AD, i J. deClaville Christiansen. "Modeling dielectric permittivity of polymer composites filled with transition metal dichalcogenide nanoparticles". Journal of Composite Materials 54, nr 25 (1.05.2020): 3841–55. http://dx.doi.org/10.1177/0021998320922601.
Pełny tekst źródłaAn, Vladimir, Herman Potgieter, Natalia Usoltseva, Damir Valiev, Sergei Stepanov, Alexey Pustovalov, Arsenii Baryshnikov, Maksim Titov i Alesya Dolinina. "MoS2@ZnO Nanoheterostructures Prepared by Electrospark Erosion for Photocatalytic Applications". Nanomaterials 11, nr 1 (9.01.2021): 157. http://dx.doi.org/10.3390/nano11010157.
Pełny tekst źródłaAn, Vladimir, Herman Potgieter, Natalia Usoltseva, Damir Valiev, Sergei Stepanov, Alexey Pustovalov, Arsenii Baryshnikov, Maksim Titov i Alesya Dolinina. "MoS2@ZnO Nanoheterostructures Prepared by Electrospark Erosion for Photocatalytic Applications". Nanomaterials 11, nr 1 (9.01.2021): 157. http://dx.doi.org/10.3390/nano11010157.
Pełny tekst źródłaJing, Yuting, Ruijing Wang, Qiang Wang i Xuefeng Wang. "Gold Nanoclusters Grown on MoS2 Nanosheets by Pulsed Laser Deposition: An Enhanced Hydrogen Evolution Reaction". Molecules 26, nr 24 (11.12.2021): 7503. http://dx.doi.org/10.3390/molecules26247503.
Pełny tekst źródłaPoudel, Yuba, Sairaman Seetharaman, Swastik Kar, Francis D’Souza i Arup Neogi. "Plasmon-Induced Enhanced Light Emission and Ultrafast Carrier Dynamics in a Tunable Molybdenum Disulfide-Gallium Nitride Heterostructure". Materials 15, nr 21 (22.10.2022): 7422. http://dx.doi.org/10.3390/ma15217422.
Pełny tekst źródłaDeepak, Francis Leonard, Rodrigo Esparza, Carlos Fernando Castro-Guerrero, Sergio Mejía-Rosales, Xochitl Lopez-Lozano i Miguel Jose-Yacaman. "Insights into the Structure of MoS2/WS2 Nanomaterial Catalysts as Revealed by Aberration Corrected STEM". Microscopy and Microanalysis 18, S5 (sierpień 2012): 65–66. http://dx.doi.org/10.1017/s1431927612012986.
Pełny tekst źródłaNagarajan, Thachnatharen, Mohammad Khalid, Nanthini Sridewi, Priyanka Jagadish i Rashmi Walvekar. "Microwave Synthesis of Molybdenum Disulfide Nanoparticles Using Response Surface Methodology for Tribological Application". Nanomaterials 12, nr 19 (27.09.2022): 3369. http://dx.doi.org/10.3390/nano12193369.
Pełny tekst źródłaMei, Liang, Xiaoping Gao, Zhan Gao, Qingyong Zhang, Xinge Yu, Andrey L. Rogach i Zhiyuan Zeng. "Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction". Chemical Communications 57, nr 23 (2021): 2879–82. http://dx.doi.org/10.1039/d0cc08091h.
Pełny tekst źródłaBojarska, Zuzanna, Marta Mazurkiewicz-Pawlicka, Stanisław Gierlotka i Łukasz Makowski. "Production and Properties of Molybdenum Disulfide/Graphene Oxide Hybrid Nanostructures for Catalytic Applications". Nanomaterials 10, nr 9 (17.09.2020): 1865. http://dx.doi.org/10.3390/nano10091865.
Pełny tekst źródłaXU, W., Y. FU, W. YAN, Y. XU, M. XUE i J. XU. "TiO2 NANOPARTICLES DECORATED FLOWER-LIKE MoS2 NANOSPHERES WITH ENLARGED INTERLAYER SPACING OF (002) PLANE FOR ENHANCED TRIBOLOGICAL PROPERTIES". Digest Journal of Nanomaterials and Biostructures 16, nr 1 (styczeń 2021): 81–91. http://dx.doi.org/10.15251/djnb.2021.161.81.
Pełny tekst źródłaMalagrino, Thiago R. S., Anna P. Godoy, Juliano M. Barbosa, Abner G. T. Lima, Nei C. O. Sousa, Jairo J. Pedrotti, Pamela S. Garcia i in. "Multifunctional Hybrid MoS2-PEGylated/Au Nanostructures with Potential Theranostic Applications in Biomedicine". Nanomaterials 12, nr 12 (15.06.2022): 2053. http://dx.doi.org/10.3390/nano12122053.
Pełny tekst źródłaYanilmaz, Meltem, i Jung Joong Kim. "Flexible MoS2 Anchored on Ge-Containing Carbon Nanofibers". Nanomaterials 13, nr 1 (23.12.2022): 75. http://dx.doi.org/10.3390/nano13010075.
Pełny tekst źródłaSantalucia, Rosangela, Paolo Negro, Tiziano Vacca, Francesco Pellegrino, Alessandro Damin, Federico Cesano i Domenica Scarano. "In Situ Assembly of Well-Defined MoS2 Slabs on Shape-Tailored Anatase TiO2 Nanostructures: Heterojunctions Role in Phenol Photodegradation". Catalysts 12, nr 11 (11.11.2022): 1414. http://dx.doi.org/10.3390/catal12111414.
Pełny tekst źródłaGholinia, Mosayeb, Aliakbar Ranjbar, Mohammad Javidan i Aliakbar Hosseinpour. "Effect of two different nano-particles (GO-MoS2) and a new micro-sprayer model on power electronic module for thermal management". Advances in Mechanical Engineering 14, nr 5 (maj 2022): 168781322210875. http://dx.doi.org/10.1177/16878132221087512.
Pełny tekst źródłaJOTHIRAMALINGAM, R., H. A. AL-LOHEDAN, D. M. AL-DHAYAN i M. D. WASMIAH. "PREPARATION AND STRUCTURAL CHARACTERIZATION OF MoS2 NANOPARTICLE COATED GRAPHENE OXIDE/MANGANESE OXIDE COMPOSITE FOR ENERGY STORAGE APPLICATION". Chalcogenide Letters 17, nr 4 (kwiecień 2020): 217–22. http://dx.doi.org/10.15251/cl.2020.174.217.
Pełny tekst źródłaBoychuk, V. M., L. O. Shyyko, V. O. Kotsyubynsky i A. Kachmar. "Structure and morphology of MoS2 / Carbon nanocomposite materials". Фізика і хімія твердого тіла 20, nr 1 (1.04.2019): 63–68. http://dx.doi.org/10.15330/pcss.20.1.68.
Pełny tekst źródłaKhan, Ramsha, Adeel Riaz, Sofia Javed, Rahim Jan, Muhammad Aftab Akram i Mohammad Mujahid. "Synthesis and Characterization of MoS2/TiO2 Nanocomposites for Enhanced Photocatalytic Degradation of Methylene Blue under Sunlight Irradiation". Key Engineering Materials 778 (wrzesień 2018): 137–43. http://dx.doi.org/10.4028/www.scientific.net/kem.778.137.
Pełny tekst źródłaChen, Kangmin, Wei Jiang, Xianghong Cui i Shuqi Wang. "Effect of nanoparticles on the tribo-layers and the tribology of a steel-on-steel couple". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, nr 1 (25.03.2018): 30–40. http://dx.doi.org/10.1177/1350650118765005.
Pełny tekst źródłaBai, Xiaoyan, Tianqi Cao, Tianyu Xia, Chenxiao Wu, Menglin Feng, Xinru Li, Ziqing Mei i in. "MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting". Nanomaterials 13, nr 4 (16.02.2023): 752. http://dx.doi.org/10.3390/nano13040752.
Pełny tekst źródłaSaboor, Khalid, Jan, Khan, Farooq, Afridi, Sadiq i Arif. "PS/PANI/MoS2 Hybrid Polymer Composites with High Dielectric Behavior and Electrical Conductivity for EMI Shielding Effectiveness". Materials 12, nr 17 (22.08.2019): 2690. http://dx.doi.org/10.3390/ma12172690.
Pełny tekst źródłaDuc, Tran Minh, Tran The Long i Tran Quyet Chien. "Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel". Lubricants 7, nr 5 (8.05.2019): 40. http://dx.doi.org/10.3390/lubricants7050040.
Pełny tekst źródłaMa, Lin, Xiaoping Zhou, Limei Xu, Xuyao Xu i Lingling Zhang. "Microwave-Assisted Hydrothermal Preparation of SnO2/MoS2 Composites and their Electrochemical Performance". Nano 11, nr 02 (luty 2016): 1650023. http://dx.doi.org/10.1142/s1793292016500235.
Pełny tekst źródłaZhang, Jie, Yamin Yang i Zhiyu Qian. "Inherent Electrochemical Properties of MoS2 Nanoparticles". Journal of Bionanoscience 11, nr 3 (1.06.2017): 189–93. http://dx.doi.org/10.1166/jbns.2017.1438.
Pełny tekst źródła