Książki na temat „Monte Carlo sampling and estimation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych książek naukowych na temat „Monte Carlo sampling and estimation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.
Lemieux, Christiane. Monte carlo and quasi-monte carlo sampling. New York: Springer, 2009.
Znajdź pełny tekst źródłaFu, Michael. Conditional Monte Carlo: Gradient Estimation and Optimization Applications. Boston, MA: Springer US, 1997.
Znajdź pełny tekst źródłaFu, Michael. Conditional Monte Carlo: Gradient estimation and optimization applications. Boston: Kluwer Academic Publishers, 1997.
Znajdź pełny tekst źródłaEvans, Michael J. Monte Carlo computation of marginal posterior qualities. Toronto: University of Toronto, Dept. of Statistics, 1988.
Znajdź pełny tekst źródłaManly, Bryan F. J., 1944-, red. Randomization, bootstrap and Monte Carlo methods in biology. Wyd. 2. London: Chapman & Hall, 1997.
Znajdź pełny tekst źródłaManly, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. Wyd. 2. Boca Raton, Fla: Chapman and Hall/CRC, 2001.
Znajdź pełny tekst źródłaEvans, Michael J. Adaptive importance sampling and chaining. Toronto: University of Toronto, Dept. of Statistics, 1990.
Znajdź pełny tekst źródłaBosá, Ivana. Exact property estimation from diffusion Monte Carlo with minimal stochastic reconfiguration. St. Catharines, Ont: Brock University, Dept. of Physics, 2004.
Znajdź pełny tekst źródłaAït-Sahalia, Yacine. Maximum likelihood estimation of stochastic volatility models. Cambridge, MA: National Bureau of Economic Research, 2004.
Znajdź pełny tekst źródłaPetrone, Sonia. A note on convergence rates of Gibbs sampling for nonparametric mixtures. Toronto: University of Toronto, Dept. of Statistics, 1998.
Znajdź pełny tekst źródłaNeal, Radford M. Markov chain Monte Carlo methods based on "slicing" the density function. Toronto: University of Toronto, Dept. of Statistics, 1997.
Znajdź pełny tekst źródłaRacine, J. S. Semiparamteric estimation in the presence of heteroskedasticity of unknown form. Toronto, Ont: Dept. of Economics, York University, 1989.
Znajdź pełny tekst źródłaZhao, Zhong. Sensitivity of propensity score methods to the specifications. Bonn, Germany: IZA, 2005.
Znajdź pełny tekst źródłaRacine, J. S. The semiparametric approach to the estimation of systems of equations models in the presence of heteroskedasticity of unknown form. Toronto, Ont: Dept. of Economics, York University, 1989.
Znajdź pełny tekst źródłaSrivastava, M. S. Classification with a preassigned error rate when two covariance matrices are equal. Toronto: University of Toronto, Dept. of Statistics, 1998.
Znajdź pełny tekst źródłaMartin, Christopher. Using equilibrium models on disequilibrium data: Some Monte-Carlo evidence on estimation and testing. London: University College, 1987.
Znajdź pełny tekst źródłaChristopher, Martin. Using equilibrium models on disequilibrium data: Some Monte-Carlo evidence on estimation and testing. London: Birkbeck College, [Dept. of Economics], 1987.
Znajdź pełny tekst źródłaDietrich, Jason Lynn. How low can you go?: An optimal sampling strategy for fair lending exams. Washington, DC: Office of the Comptroller of the Currency, 2001.
Znajdź pełny tekst źródłaHeinz, Erzberger, i Ames Research Center, red. Conflict probablility estimation for free flight. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1996.
Znajdź pełny tekst źródłaBöhning, Dankmar. On minimizing chi-square distances under the hypothesis of homogeneity of independence for a two-way contingency table. Osnabrück: Fachbereich Psychologie, Universität Osnabrück, 1985.
Znajdź pełny tekst źródłaSchwenzfeger, K. J. Comparison of ERS-1 scatterometer Monte Carlo performance simulations using a weighted nonlinear least-squares and a maximum likelihood estimation method. Neubiberg: Hochschule der Bundeswehr München, 1985.
Znajdź pełny tekst źródłaRubinstein, Reuven Y. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. New York, NY: Springer New York, 2004.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaHaldrup, Niels. Seasonal integration and cointegration: A Monte Carlo study on the implications of seasonality for estimation and testing of long run relationships through static regressions. [s.l.]: typescript, 1988.
Znajdź pełny tekst źródłaAllen, Michael P., i Dominic J. Tildesley. Monte Carlo methods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0004.
Pełny tekst źródłaLemieux, Christiane. Monte Carlo and Quasi-Monte Carlo Sampling. Springer, 2010.
Znajdź pełny tekst źródłaMonte Carlo and Quasi-Monte Carlo Sampling. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-78165-5.
Pełny tekst źródłaMonte Carlo and Quasi-Monte Carlo Sampling (Springer Series in Statistics). Springer, 2009.
Znajdź pełny tekst źródłaCoolen, A. C. C., A. Annibale i E. S. Roberts. Markov Chain Monte Carlo sampling of graphs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0006.
Pełny tekst źródłaBoudreau, Joseph F., i Eric S. Swanson. Monte Carlo methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0007.
Pełny tekst źródłaConditional Monte Carlo: Gradient Estimation and Optimization Applications. Springer, 2011.
Znajdź pełny tekst źródłaAllen, Michael P., i Dominic J. Tildesley. Advanced Monte Carlo methods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0009.
Pełny tekst źródłaRandomization and Monte Carlo methods in biology. London: Chapman and Hall, 1991.
Znajdź pełny tekst źródłaManly, Bryan F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaManly, Bryan F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaManly, Bryan F. J., i Jorge A. Navarro Alberto. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaManly, Bryan F. J., i Jorge A. Navarro Alberto. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaManly, Bryan F. J., i Jorge A. Navarro Alberto. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaManly, Bryan F. J., i Jorge A. Navarro Alberto. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaManly, Bryan F. J., i Jorge A. Navarro Alberto. Randomization, Bootstrap and Monte Carlo Methods in Biology. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaManly, Bryan F. J., i Jorge A. Navarro Alberto. Randomization, Bootstrap, and Monte Carlo Methods in Biology. CRC Press LLC, 2022.
Znajdź pełny tekst źródłaKroese, Dirk P., i Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley & Sons, Incorporated, John, 2008.
Znajdź pełny tekst źródłaKroese, Dirk P., i Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley & Sons, Incorporated, John, 2016.
Znajdź pełny tekst źródłaRandomization, bootstrap and Monte Carlo methods in biology. Wyd. 3. Boca Raton, FL: Chapman & Hall/ CRC, 2007.
Znajdź pełny tekst źródłaKroese, Dirk P., i Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley & Sons, Incorporated, John, 2016.
Znajdź pełny tekst źródłaKroese, Dirk P., i Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley & Sons, Incorporated, John, 2011.
Znajdź pełny tekst źródłaKroese, Dirk P., i Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley & Sons, Incorporated, John, 2016.
Znajdź pełny tekst źródłaRubinstein, Reuven Y. Simulation and the Monte Carlo Method. Wiley & Sons, Incorporated, John, 2009.
Znajdź pełny tekst źródła