Artykuły w czasopismach na temat „Molybdate Glass”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Molybdate Glass”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bhattacharya, Sanjib, Arun Kr Bar i Debasish Roy. "Structural Study of Molybdate Glass-Nanocomposites". Journal of Advanced Physics 2, nr 3 (1.09.2013): 241–44. http://dx.doi.org/10.1166/jap.2013.1070.
Pełny tekst źródłaTan, Shengheng, Michael I. Ojovan, Neil C. Hyatt i Russell J. Hand. "MoO3 incorporation in alkaline earth aluminosilicate glasses". MRS Proceedings 1744 (2015): 67–72. http://dx.doi.org/10.1557/opl.2015.330.
Pełny tekst źródłaInmae, Thitinun, Lek Sikong i Kalayanee Kooptarnond. "The Effect of Lithium Molybdate in Tungsten Trioxide Electrochromic Film". Applied Mechanics and Materials 873 (listopad 2017): 32–36. http://dx.doi.org/10.4028/www.scientific.net/amm.873.32.
Pełny tekst źródłaDeb, B., i A. Ghosh. "Kinetics of crystallization in selenium molybdate glass". Journal of Non-Crystalline Solids 385 (luty 2014): 30–33. http://dx.doi.org/10.1016/j.jnoncrysol.2013.11.001.
Pełny tekst źródłaHarrison, Mike T., i Carl J. Steele. "Vitrification of simulated highly active calcines containing high concentrations of sodium and molybdenum". MRS Advances 1, nr 63-64 (2016): 4233–38. http://dx.doi.org/10.1557/adv.2017.214.
Pełny tekst źródłaGhosh, A. "Correlated-barrier hopping in semiconducting tellurium molybdate glass". Physical Review B 45, nr 19 (15.05.1992): 11318–20. http://dx.doi.org/10.1103/physrevb.45.11318.
Pełny tekst źródłaBhattacharya, S., i A. Ghosh. "Electrical transport properties of semiconducting lithium molybdate glass nanocomposites". Journal of Chemical Physics 127, nr 19 (21.11.2007): 194709. http://dx.doi.org/10.1063/1.2802383.
Pełny tekst źródłaPak, V. N., i A. N. Borisov. "Polymerization and photochromism of ammonium molybdate in porous glass". Optics and Spectroscopy 121, nr 2 (sierpień 2016): 253–55. http://dx.doi.org/10.1134/s0030400x16080191.
Pełny tekst źródłaKr. Bar, Arun, Debasish Roy i Sanjib Bhattacharya. "Relaxation of Cu+2 Ions in Molybdate Glass-Nanocomposites". Advanced Science Focus 2, nr 2 (1.06.2014): 155–58. http://dx.doi.org/10.1166/asfo.2014.1089.
Pełny tekst źródłaDeb, B., i A. Ghosh. "Microstructural study of Ag2S doped silver molybdate glass-nanocomposites". Journal of Alloys and Compounds 509, nr 5 (luty 2011): 2256–62. http://dx.doi.org/10.1016/j.jallcom.2010.10.197.
Pełny tekst źródłaBhattacharya, S., i A. Ghosh. "Transport properties of AgI doped silver molybdate superionic glass-nanocomposites". Journal of Physics: Condensed Matter 17, nr 37 (2.09.2005): 5655–62. http://dx.doi.org/10.1088/0953-8984/17/37/004.
Pełny tekst źródłaWang, Siying, Hongbo Zhang, Tong Wang, Huimin Lv, Xiangyu Zou, Yulin Wei, Weihua Hu i Chunhui Su. "Synthesis and luminescence properties of Sm3+ doped molybdate glass ceramic". Journal of Alloys and Compounds 823 (maj 2020): 153822. http://dx.doi.org/10.1016/j.jallcom.2020.153822.
Pełny tekst źródłaBhattacharya, Sanjib, Tanusree Kar, Arun Kr Bar, Debasish Roy, M. P. F. Graca i M. A. Valente. "Structural Behaviors and Optical Properties of Semiconducting Zinc-Molybdate Glass Nanocomposites". Science of Advanced Materials 3, nr 2 (1.04.2011): 284–88. http://dx.doi.org/10.1166/sam.2011.1158.
Pełny tekst źródłaTsyganova, T. A., V. A. Bayanov, D. S. Shevchenko i O. V. Rakhimova. "Interaction between porous glass and ammonium molybdate solution in acidic medium". Glass Physics and Chemistry 42, nr 4 (lipiec 2016): 426–28. http://dx.doi.org/10.1134/s1087659616040143.
Pełny tekst źródłaJakovidis, G., I. M. Jamieson i A. Singh. "RF-Sputtered MoS2 Film Morphology and the Imperfection Nucleation Model". Surface Review and Letters 10, nr 02n03 (kwiecień 2003): 443–48. http://dx.doi.org/10.1142/s0218625x03004743.
Pełny tekst źródłaSavage, David, Jane E. Robbins i Richard J. Merriman. "Hydrothermal crystallization of a radioactive waste storage glass". Mineralogical Magazine 49, nr 351 (kwiecień 1985): 195–201. http://dx.doi.org/10.1180/minmag.1985.049.351.06.
Pełny tekst źródłaYao Yao i Chunhui Niu. "UP-Conversion Luminescence Characteristics of Er3+/Yb3+ Co-Doped Molybdate Glass Ceramics". Glass Physics and Chemistry 47, nr 6 (listopad 2021): 553–62. http://dx.doi.org/10.1134/s108765962106033x.
Pełny tekst źródłaZhang, Zefang, Weili Liu i Zhitang Song. "Effect of ammonium molybdate concentration on chemical mechanical polishing of glass substrate". Journal of Semiconductors 31, nr 11 (listopad 2010): 116003. http://dx.doi.org/10.1088/1674-4926/31/11/116003.
Pełny tekst źródłaBhattacharya, S., i A. Ghosh. "Relaxation Dynamics in Superionic Molybdate Glass Nanocomposites Embedded with α-AgI Nanoparticles". Journal of Physical Chemistry C 114, nr 13 (4.03.2010): 5745–50. http://dx.doi.org/10.1021/jp909815t.
Pełny tekst źródłaFarasat, Mahshid, M. Maqsood Golzan, Khalil Farhadi, S. H. Reza Shojaei i Sorayya Gheisvandi. "Preparation, characterization and electrochromic properties of composite thin films incorporation of polyaniline". Modern Physics Letters B 30, nr 15 (9.06.2016): 1650175. http://dx.doi.org/10.1142/s021798491650175x.
Pełny tekst źródłaWillinger, Elena, Vitaly Sinitsyn, Salavat Khasanov, Boris Redkin, Semeon Shmurak i Eugeny Ponyatovsky. "Origin of “memory glass” effect in pressure-amorphized rare-earth molybdate single crystals". Journal of Solid State Chemistry 222 (luty 2015): 1–6. http://dx.doi.org/10.1016/j.jssc.2014.10.035.
Pełny tekst źródłaVarghese, Jobin, Tuomo Siponkoski, Merja Teirikangas, Mailadil Thomas Sebastian, Antti Uusimäki i Heli Jantunen. "Structural, Dielectric, and Thermal Properties of Pb Free Molybdate Based Ultralow Temperature Glass". ACS Sustainable Chemistry & Engineering 4, nr 7 (16.06.2016): 3897–904. http://dx.doi.org/10.1021/acssuschemeng.6b00721.
Pełny tekst źródłaNagata, Minako, i Toru Sugawara. "MoO3 Solubility and Chemical Durability of V2O5-Bearing Borosilicate Glass". Inorganics 11, nr 7 (24.07.2023): 311. http://dx.doi.org/10.3390/inorganics11070311.
Pełny tekst źródłaBulycheva, I. A., V. P. Krokhin i A. P. Khodykin. "Effect of small amounts of sodium molybdate on the optical characteristics of household glass". Glass and Ceramics 55, nr 1-2 (styczeń 1998): 42–43. http://dx.doi.org/10.1007/bf03180145.
Pełny tekst źródłaDukstiene, Nijole, Dovile Sinkeviciute i Asta Guobiene. "Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2∣glass plate". Open Chemistry 10, nr 4 (1.08.2012): 1106–18. http://dx.doi.org/10.2478/s11532-012-0012-7.
Pełny tekst źródłaChornii, V., V. Boyko, O. Pan’ko, S. Nedilko, M. Slobodyanik, K. Terebilenko i V. Scherbatskyi. "Bi-containing molybdate glass-ceramics as luminescent coating for elaboration of white light emitting diodes". Energy and automation, nr 6 (27.12.2019): 122–32. http://dx.doi.org/10.31548/energiya2019.06.122.
Pełny tekst źródłaBoué, E., S. Schuller, M. J. Toplis, T. Charpentier, A. Mesbah, H. Pablo, M. Monnereau i M. Moskura. "Kinetic and thermodynamic factors controlling the dissolution of molybdate-bearing calcines during nuclear glass synthesis". Journal of Nuclear Materials 519 (czerwiec 2019): 74–87. http://dx.doi.org/10.1016/j.jnucmat.2019.03.037.
Pełny tekst źródłaArena, Katia, Giuseppe Brancato, Francesco Cacciola, Francesco Crea, Salvatore Cataldo, Concetta De Stefano, Sofia Gama i in. "8-Hydroxyquinoline-2-Carboxylic Acid as Possible Molybdophore: A Multi-Technique Approach to Define Its Chemical Speciation, Coordination and Sequestering Ability in Aqueous Solution". Biomolecules 10, nr 6 (18.06.2020): 930. http://dx.doi.org/10.3390/biom10060930.
Pełny tekst źródłaNakajima, Ryo, Tsuyoshi Honma i Takayuki Komatsu. "Laser-Induced Line Patterning of Nonlinear Optical .BETA.'-SmxGd2-x(MoO4)3 Molybdate Crystals in Glass". Journal of the Japan Society of Powder and Powder Metallurgy 55, nr 3 (2008): 205–10. http://dx.doi.org/10.2497/jjspm.55.205.
Pełny tekst źródłaHoppe, Uwe. "Network-forming oxides with non-centrosymmetric structural groups – diffraction results on molybdate and tellurite glasses". Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B 63, nr 6 (11.12.2022): 161–71. http://dx.doi.org/10.13036/17533562.63.6.13.
Pełny tekst źródłaSuzuki, Futoshi, Tsuyoshi Honma i Takayuki Komatsu. "Laser patterning and morphology of two-dimensional planar ferroelastic rare-earth molybdate crystals on the glass surface". Materials Chemistry and Physics 125, nr 3 (luty 2011): 377–81. http://dx.doi.org/10.1016/j.matchemphys.2010.10.054.
Pełny tekst źródłaDeb, B., i A. Ghosh. "Silver Ion Dynamics in Ag2S-Doped Silver Molybdate–Glass Nanocomposites: Correlation of Conductivity and Scaling with Structure". Journal of Physical Chemistry C 115, nr 29 (6.07.2011): 14141–47. http://dx.doi.org/10.1021/jp204474n.
Pełny tekst źródłaIordanova, Reni, Lyubomir Aleksandrov, Angelina Stoyanova i Yanko B. Dimitriev. "Glass Formation and Structure of the Glasses in the MoO3-Nd2O3-Bi2O3 System". Advanced Materials Research 39-40 (kwiecień 2008): 73–76. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.73.
Pełny tekst źródłaLoganina, Valentina, i Maria V. Zaytseva. "Compositions for Limestone Restoration". Key Engineering Materials 909 (4.02.2022): 177–83. http://dx.doi.org/10.4028/p-a554k3.
Pełny tekst źródłaTsyganova, T. A., V. A. Bayanov, D. S. Shevchenko i O. V. Rakhimova. "Features of “secondary” silica interaction with ammonium molybdate in the porous space of high silica glass in acidic medium". Russian Journal of General Chemistry 86, nr 7 (lipiec 2016): 1774–75. http://dx.doi.org/10.1134/s1070363216070410.
Pełny tekst źródłaBhattacharya, Sanjib, Ranadip Kundu, Koyel Bhattacharya, Asmita Poddar i Debasish Roy. "Micromechanical hardness study and the effect of reverse indentation size on heat-treated silver doped zinc-molybdate glass nanocomposites". Journal of Alloys and Compounds 770 (styczeń 2019): 136–42. http://dx.doi.org/10.1016/j.jallcom.2018.08.085.
Pełny tekst źródłaSHIN, Jae-Young, i Bong-Ki RYU. "Structural, thermal, and chemical properties of boron oxide-doped molybdate glass for use as a lead-free low-temperature sealing material". Journal of the Ceramic Society of Japan 125, nr 12 (2017): 922–25. http://dx.doi.org/10.2109/jcersj2.17094.
Pełny tekst źródłaDu Yingying, 杜莺莺, 马洪良 Ma Hongliang, 戴晔 Dai Ye, 韩咏梅 Han Yongmei i 钟敏建 Zhong Minjian. "β′-Dy2(MoO4)3and α-MoO3Crystallization Induced by High Repetition Rate Femtosecond Laser Irradiation on the Surface of Dysprosium Molybdate Glass". Acta Optica Sinica 32, nr 8 (2012): 0814002. http://dx.doi.org/10.3788/aos201232.0814002.
Pełny tekst źródłaAgrawal, R. C., M. L. Verma, R. K. Gupta, R. Kumar i R. M. Chandola. "Ion transport and solid state battery studies on a new silver molybdate superionic glass system: x[0.75AgI: 0.25AgCl]: (1-x)[Ag2O: MoO3]". Ionics 8, nr 5-6 (wrzesień 2002): 426–32. http://dx.doi.org/10.1007/bf02376057.
Pełny tekst źródłaIordanova, Reni, Margarita Milanova, Angelina Stoyanova i Cvetoslav Iliev. "Crystallization of Glasses in the MoO3-Bi2O3 System". Advanced Materials Research 39-40 (kwiecień 2008): 391–94. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.391.
Pełny tekst źródłaEremyashev, Viacheslav E., Galina G. Korinevskaya i Dmitry A. Zherebtsov. "Effect of Phosphorus on Crystallization of Alkaline Molybdenum-Containing Borosilicate Glasses". Defect and Diffusion Forum 410 (17.08.2021): 720–24. http://dx.doi.org/10.4028/www.scientific.net/ddf.410.720.
Pełny tekst źródłaGalicia, A., T. Zayas i L. Salgado. "Electrochemical Reduction of Molybdate on Glassy Carbon Electrode in Acidic Media". ECS Transactions 47, nr 1 (24.09.2013): 257–63. http://dx.doi.org/10.1149/04701.0257ecst.
Pełny tekst źródłaKudrenko, E., S. Khasanov, V. Sinitsyn, V. Roddatis, S. Shmurak, B. Redkin i E. Ponyatovsky. "The origin of memory glass effect in pressure-amorphized rare earth molybdates". Acta Crystallographica Section A Foundations of Crystallography 67, a1 (22.08.2011): C98. http://dx.doi.org/10.1107/s0108767311097601.
Pełny tekst źródłaPalui, A., B. Deb i A. Ghosh. "Electrical and dielectric properties of silver iodide doped selenium molybdate glassy conductors". Journal of Applied Physics 114, nr 8 (28.08.2013): 084104. http://dx.doi.org/10.1063/1.4818959.
Pełny tekst źródłaIlangovan, G., i K. Chandarasekara Pillai. "Unusual activation of glassy carbon electrodes for enhanced adsorption of monomeric molybdate(VI)". Journal of Electroanalytical Chemistry 431, nr 1 (czerwiec 1997): 11–14. http://dx.doi.org/10.1016/s0022-0728(97)00155-1.
Pełny tekst źródłaGalicia, Alejandra, Teresa Zayas i Leonardo Salgado. "Voltammetric Study of the Molybdate Reduction and Subsequent Oxidation on Glassy Carbon Electrode in Acid Media". ECS Transactions 36, nr 1 (16.12.2019): 13–19. http://dx.doi.org/10.1149/1.3660594.
Pełny tekst źródłaImada, S., A. Higashiya, M. Okazaki, M. Kashida, A. Sekiyama, Y. Taguchi, M. Iwama, K. Ogusi, Y. Tokura i S. Suga. "Ferromagnetic metal to spin-glass insulator transition in pyrochlore-type molybdates Mo2O7 studied with photoemission and XMCD". Journal of Electron Spectroscopy and Related Phenomena 144-147 (czerwiec 2005): 711–13. http://dx.doi.org/10.1016/j.elspec.2005.01.127.
Pełny tekst źródłaLi, Wenming, Jingyun Xiao, Liangyuan Yao, Yanping Wei, Jinsong Zuo, Weili Zeng, Jianhua Ding i Quanguo He. "Zirconium Molybdate Nanocomposites’ Sensing Platform for the Sensitive and Selective Electrochemical Detection of Adefovir". Molecules 27, nr 18 (15.09.2022): 6022. http://dx.doi.org/10.3390/molecules27186022.
Pełny tekst źródłaWei, Yanping, Liangyuan Yao, Yiyong Wu, Xia Liu, Jinxia Feng, Jianhua Ding, Kanghua Li i Quanguo He. "Ultrasensitive electrochemical detection for nanomolarity Acyclovir at ferrous molybdate nanorods and graphene oxide composited glassy carbon electrode". Colloids and Surfaces A: Physicochemical and Engineering Aspects 641 (maj 2022): 128601. http://dx.doi.org/10.1016/j.colsurfa.2022.128601.
Pełny tekst źródłaIlangovan, G., i K. Chandrasekara Pillai. "Electrochemical and XPS Characterization of Glassy Carbon Electrode Surface Effects on the Preparation of a Monomeric Molybdate(VI)-Modified Electrode". Langmuir 13, nr 3 (luty 1997): 566–75. http://dx.doi.org/10.1021/la960053n.
Pełny tekst źródła