Gotowa bibliografia na temat „Molecular materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Molecular materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Molecular materials"
Miller, J. S. "Molecular Materials". Science 262, nr 5138 (26.11.1993): 1460. http://dx.doi.org/10.1126/science.262.5138.1460.
Pełny tekst źródłaMiller, Joel S. "Molecular Materials I. Molecular materials mimic inorganic network solids". Advanced Materials 2, nr 2 (luty 1990): 98–99. http://dx.doi.org/10.1002/adma.19900020207.
Pełny tekst źródłaHarada, Akira, i Mikiharu Kamachi. "Molecular Assembly Materials." Kobunshi 41, nr 12 (1992): 814–17. http://dx.doi.org/10.1295/kobunshi.41.814.
Pełny tekst źródłaCoronado, E., A. Forment-Aliaga, J. R. Galán-Mascarós, C. Giménez-Saiz, C. J. Gómez-Garcı́a, E. Martinéz-Ferrero, A. Nuez i F. M. Romero. "Multifunctional molecular materials". Solid State Sciences 5, nr 6 (czerwiec 2003): 917–24. http://dx.doi.org/10.1016/s1293-2558(03)00116-x.
Pełny tekst źródłaGatteschi, Dante. "Magnetic molecular materials". Current Opinion in Solid State and Materials Science 1, nr 2 (kwiecień 1996): 192–98. http://dx.doi.org/10.1016/s1359-0286(96)80083-0.
Pełny tekst źródłaDei, Andrea. "Magnetic molecular materials". Inorganica Chimica Acta 191, nr 2 (styczeń 1992): 279. http://dx.doi.org/10.1016/s0020-1693(00)93471-6.
Pełny tekst źródłaAndruh, Marius. "Inorganic molecular materials". Comptes Rendus Chimie 15, nr 10 (październik 2012): 837. http://dx.doi.org/10.1016/j.crci.2012.10.001.
Pełny tekst źródłaChorazy (Guest Editor), Szymon, i Barbara Sieklucka (Guest Editor). "Functional Molecular Materials". Open Chemistry Journal 6, nr 1 (22.03.2019): 8–9. http://dx.doi.org/10.2174/1874842201906010008.
Pełny tekst źródłaXu, Jialiang, Chengfen Xing i Xian-He Bu. "Functional molecular materials". Chinese Chemical Letters 29, nr 2 (luty 2018): 217–18. http://dx.doi.org/10.1016/j.cclet.2018.01.009.
Pełny tekst źródłaOuahab, Lahcène, i Toshiaki Enoki. "Multiproperty Molecular Materials: TTF-Based Conducting and Magnetic Molecular Materials". European Journal of Inorganic Chemistry 2004, nr 5 (marzec 2004): 933–41. http://dx.doi.org/10.1002/ejic.200300869.
Pełny tekst źródłaRozprawy doktorskie na temat "Molecular materials"
Souto, Salom Manuel. "Multifunctional Materials based on TTFPTM dyads: towards new Molecular Switches, Conductors and Rectifiers". Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/393986.
Pełny tekst źródłaThis Thesis is focused on the design, synthesis and characterization of new multifunctional molecular materials based on donor-acceptor (D-A) dyads formed by the electron-donor tetrathiafulvalene (TTF) unit linked to the electron-acceptor polychlorotriphenylmethyl (PTM) radical moiety through different -conjugated bridges. These compounds can exhibit interesting physical properties such bistability and nonlinear optical properties in solution, conductivity in the solid state or electrical rectification when anchored on surfaces. Thus, these systems could find potential applications in the field of molecular electronics as switches, conductors or rectifiers. In the first part of the Thesis, we have studied the bistability phenomenon in solution of a D-A dyad based on a PTM radical linked to a TTF moiety through a vinyelene bridge. This system exhibited a temperature-induced switching between diamagnetic dimers at room temperature and paramagnetic monomers at high temperature. The two different states showed different optical and magnetic properties when using the temperature as external input. On the other hand, we have also reported the A-D-A diradical triad based on two PTM radical subunits connected through a TTF-vinylene bridge that can reversibly modify the optical, electronic and magnetic properties by one-electron reduction and oxidation in CH2Cl2 solution. The modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes were rationalized by theoretical calculations. In the second part of the Thesis, we have reported the synthesis and characterization of different TTF--PTM dyad derivatives increasing the number of vinylene units between the D and A moieties. We have studied the intramolecular charge transfer and non-linear optical (NLO) properties in solution and their dependence on the open-shell structure as well as on the bridge length for this family of compounds. In the third part of the Thesis, we have studied self-assembled architectures in the solid state of a new D-A dyad based on a PTM radical linked to a TTF moiety through a -phenyl-pyrrole bridge. The crystal structure showed an interesting supramolecular arrangement with segregated donor and acceptor units. Moreover, we reported the appearance of conductivity in single crystals of the same system when increasing the pressure. The semiconducting behavior at high pressures has been attributed to the enhanced intermolecular interactions and charge delocalization due to incorporation of TTF units which force the formation of close packed stacks of molecules. Finally in the last part of the Thesis, we have reported a new TTF-PTM dyad that was functionalized with a disulfide group in order to prepare self-assembled monolayers (SAMs) on gold. These SAMs were fully characterized by different spectroscopic techniques in order to study the electronic structure of the system. Moreover, charge transport measurements through the SAMs were performed in order to evaluate the possible rectification behavior.
Villabona, Pedemonte Marc. "Photofunctional processes and materials based on molecular switches". Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673837.
Pełny tekst źródłaLos interruptores moleculares han sido un campo de investigación importante en los últimos años debido a la capacidad de interconvertir-se entre múltiples estados al exponerse a un estímulo (escritura) y modificar sus propiedades (lectura). De especial interés han sido los interruptores moleculares que interaccionan con la luz ya sea para cambiar de estado o bien modificar sus propiedades ópticas en la transformación. Esto és debido a que la luz permite un alto control espaciotemporal al mismo tiempo que és no invasiva y altamente sensible a la detección. Por estos motivos, durante esta tesis se han desarrollados múltiples materiales y procesos fotofuncionales los cuales pueden resumirse en dos partes: Por un lado, el carácter multiestado de una familia de interruptores moleculares (fluoro)crómicos basados en compuestos espirocíclicos zwitteriònicos de Meisenheimer (SZMC) se amplió mediante la identificación de un nuevo estado catiónico, con propiedades ópticas distintivas, que se puede generar tanto electroquímicamente, como a través de la adición de ácido. Además, se investigó el comportamiento termo(fluoro)crómico de los SZMC y se demostró que podían responder tanto a cambios en el disolvente como a la presencia de iones. Este comportamiento multiestado i de respuesta a múltiples estímulos fue utilizado en la preparación de varios materiales fotofuncionales basados en SZMC como: un detector de pH de amplio espectro, dispositivos electro(fluoro)crómicos i sensores iónicos, termales i de disolventes. Por otro lado, se controlaron tres procesos químicos diferentes con interruptores moleculares fotoinducidos de tipo ditienileteno (DTE) mediante luz. Primero, la introducción de un grupo electroacceptor permitió la modulación del pKa de un fenol funcionalizado con un DTE. Segundo el control de una reacción de amidación con dos longitudes de onda fue conseguido con una estrategia similar a la anterior utilizando un ester activado basado en DTE. Este reacciona hasta 24 veces más rápido en el estado cerrado generado con luz ultravioleta (ie. activación con UV) que en el estado abierto que se obtiene al irradiar con luz visible (ie. desactivación con visible). Finalmente, el control de reacciones con dos colores de luz fue utilizado para controlar la reacción de oxo-Diels Alder entre un dienófilo basado en DTE activo en el estado cerrado (ie. activación con UV, desactivación con luz visible) i un dieno generado con luz UV basado en orto-metilbenzaldehido.
Molecular switches have been an important research field in the recent years due to its capacity to interconvert between multiple states through a stimulus (writing) and change their properties (reading). Of special interest are molecular switches that interact with light by either changing their optical properties or reacting as stimulus, due to its noninvasive high spatiotemporal control and sensitivity. As a result, several photofunctional materials and processes based on molecular switches were developed during this thesis which can be summarized in two topics. On the one hand, the multistate character of a family of (fluoro)chromic molecular switches based on spirocyclic zwitterionic Meisenheimer compounds (SZMC) was broadened by identifying a novel cationic state with distinctive optical properties, which could be achieved electrochemically or via acid addition. Moreover, the thermo(fluoro)chromic behavior of SZMCs was investigated and successfully demonstrated that they can respond to certain ions and solvents. This multistimuli-responsive and multistate character was then exploited for the preparation of a variety of photofunctional materials based on SZMCs: wide-range pH detectors, electro(fluoro)chromic displays, and thermal, ionic and solvent sensors. On the other hand, light controlled reactivity with dithienylethenes (DTE) was achieved for three chemical processes. First, the introduction of electrowithdrawing groups (EWG) allowed the modulation of the pKa in acetonitrile of a series of DTEs tethering phenol moieties. Second, a similar strategy allowed for the dual-color control of an amidation reaction employing DTE-based active esters which react up to 24 times faster in the UV-generated closed state (ie. activation with UV irradiation) than in the open state formed under visible illumination (ie depletion with visible light). Finally, two-wavelength control was also achieved for an oxo-Diels Alder reaction between a DTE-dienophile active in the closed state and a UV-generated diene based on orto-methylbenzaldehyde.
Universitat Autònoma de Barcelona. Programa de Doctorat en Química
Qian, Wenjie. "Preparation and processing of molecular materials with optoelectronic properties". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/664220.
Pełny tekst źródłaOrganic small molecules materials with optoelectronic properties are particularly attractive in the fields of organic solar cells and molecular electronics. Porphyrins and curcuminoids (CCMoids) are prospective candidates in these fields due to their modifiable chemical structures and outstanding properties. In this thesis, the design and preparation of these two families of molecules, together with their self-assembly abilities and potential applications have been studied. In chapter II, two metalloporphyrins (Zn(4R-PPP) and Zn(PPP)) containing long chiral or achiral moieties with carbonyl substituents in the four meso-positions of their porphyrin cores have been synthesized. Then, a complete study related to non-covalent multiporphyrin assemblies has been performed, and initial solution-processed bulk heterojunction organic solar cell experiments were presented. To extend the above study, in chapter III, new porphyrins (TEP and Zn(TEP)) with shorter carbonyl substituents have been investigated and the effect of the length of the ligands in intermolecular interactions was studied, searching how this factor affects as well the OSCs performance. With the same chiral centres in the meso-positions, a porphyrin Zn(4R-CPP) involving carboxylic groups was obtained in chapter IV. And the binary self-assembling systems based on its derivations were achieved through non-covalent interaction or ionic self-assembly towards their potential application as active components in nanomaterials. In Chapter V, CCMoids containing chiral groups, in a similar manner as chapter II, were synthesized. In addition, research towards the achievement of terminal acid groups from the hydrolyzation of the ester groups (as chapter IV shows) allowed the investigation of the possible creation of systems with different dimensionalities. Then in Chapter VI, the synthesis of CPs/networks was explored by the use of a CCMoid containing pyridine moieties at its endings (3Py-CCM). The last chapter is devoted to the design of new porphyrin derivatives containing sulphur-based anchoring groups for their application in single molecular electronics together with the study of their electronic properties in solution and solid state. In addition, a family of CCMoids has also been analysed in a similar manner as the porphyrin derivatives, with the aim of gathering information to improve their molecular design for electronic applications.
Saraf, Sanjeev R. "Molecular characterization of energetic materials". Texas A&M University, 2003. http://hdl.handle.net/1969.1/331.
Pełny tekst źródłaMiller, Paul Francis. "Luminescence studies of molecular materials". Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342250.
Pełny tekst źródłaAricoÌ, Fabio. "New architectures for molecular materials". Thesis, University of Reading, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252257.
Pełny tekst źródłaAllan, Margaret Lucy. "Magnetic interactions in molecular materials". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387026.
Pełny tekst źródłaStaniland, Sarah S. "Sulphur-rich molecular magnetic materials". Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/12990.
Pełny tekst źródłaBranton, Philip Michael. "Molecular design of inorganic materials". Thesis, University of Surrey, 1998. http://epubs.surrey.ac.uk/844618/.
Pełny tekst źródłaWarrell, Rachel Marie. "Synthetic and Conformational Studies in Molecular Encapsulation with a Twisted Molecular Basket Complexing Organophosphorus Molecules and Fentanyl Analogues". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1502899516087168.
Pełny tekst źródłaKsiążki na temat "Molecular materials"
Bruce, Duncan W., Dermot O'Hare i Richard I. Walton, red. Molecular Materials. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686058.
Pełny tekst źródłaBruce, Duncan W., Dermot O'Hare i Richard I. Walton. Molecular materials. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaSieklucka, Barbara, i Dawid Pinkowicz, red. Molecular Magnetic Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527694228.
Pełny tekst źródłaGatteschi, Dante, Olivier Kahn, Joel S. Miller i Fernando Palacio, red. Magnetic Molecular Materials. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3254-1.
Pełny tekst źródłaNATO Advanced Research Workshop on Magnetic Molecular Materials (1990 Il Ciocco, Italy). Magnetic molecular materials. Dordrecht: Kluwer Academic Publishers, 1991.
Znajdź pełny tekst źródłaGatteschi, D. Magnetic Molecular Materials. Dordrecht: Springer Netherlands, 1991.
Znajdź pełny tekst źródłaSaito, Gunzi, Fred Wudl, Robert C. Haddon, Katsumi Tanigaki, Toshiaki Enoki i Howard E. Katz, red. Multifunctional Conducting Molecular Materials. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847557605.
Pełny tekst źródłaJiang, Jianzhuang, red. Functional Phthalocyanine Molecular Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04752-7.
Pełny tekst źródła1945-, Saito G., i Pacifichem 2005 (2005 : Honolulu, Hawaii), red. Multifunctional conducting molecular materials. Cambridge: RSC Publishing, 2007.
Znajdź pełny tekst źródłaservice), SpringerLink (Online, red. Functional Phthalocyanine Molecular Materials. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Molecular materials"
Winpenny, Richard E. P., i Eric J. L. McInnes. "Molecular Nanomagnets". W Molecular Materials, 281–348. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686058.ch5.
Pełny tekst źródłaRobertson, Neil, i Gordon T. Yee. "Molecular Magnetic Materials". W Molecular Materials, 143–209. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686058.ch3.
Pełny tekst źródłaGatteschi, Dante, Andrea Caneschi i Roberta Sessoli. "Magnetic Molecular Materials". W Inorganic and Organometallic Polymers with Special Properties, 147–60. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2612-0_11.
Pełny tekst źródłaLee, Charles Y. C., i Larry Dalton. "Molecular Engineering". W Photoactive Organic Materials, 543–46. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2622-1_38.
Pełny tekst źródłaGhosh, Subhasis. "Molecular Electronics". W Advanced Structured Materials, 235–60. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6214-8_9.
Pełny tekst źródłaMathonière, Corine, Hiroko Tokoro i Shin-ichi Ohkoshi. "Molecular Photomagnets". W Molecular Magnetic Materials, 323–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694228.ch13.
Pełny tekst źródłaPalstra, Thomas T. M., i Alexey O. Polyakov. "Molecular Multiferroics". W Molecular Magnetic Materials, 405–18. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694228.ch16.
Pełny tekst źródłaShatruk, Michael, Silvia Gómez-Coca i Kim R. Dunbar. "Molecular Magnetism". W Molecular Magnetic Materials, 29–51. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694228.ch2.
Pełny tekst źródłaMaury, Olivier, i Hubert Le Bozec. "Metal-Based Quadratic Nonlinear Optical Materials". W Molecular Materials, 1–59. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686058.ch1.
Pełny tekst źródłaBinnemans, Koen. "Physical Properties of Metallomesogens". W Molecular Materials, 61–141. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686058.ch2.
Pełny tekst źródłaStreszczenia konferencji na temat "Molecular materials"
Watanabe, Go. "Molecular-level insights into functional soft materials". W Liquid Crystals XXVIII, redaktor Iam Choon Khoo, 27. SPIE, 2024. http://dx.doi.org/10.1117/12.3028058.
Pełny tekst źródłaClark, Alex S. "Coherent molecular quantum photonics". W Quantum Nanophotonic Materials, Devices, and Systems 2024, redaktorzy Igor Aharonovich, Cesare Soci i Matthew T. Sheldon, 1. SPIE, 2024. http://dx.doi.org/10.1117/12.3028752.
Pełny tekst źródłaOmatsu, Takashige. "Light induced chiral structured materials (Conference Presentation)". W Molecular Machines, redaktor Zouheir Sekkat. SPIE, 2018. http://dx.doi.org/10.1117/12.2323650.
Pełny tekst źródłaP. Tarakeshwar, Juan Jose Palacios i Dae M. Kim. "Electrode-molecule interface effects on molecular conductance". W 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388726.
Pełny tekst źródłaTakashima, Yoshinori, i Akira Harada. "Photo-stimuli responsive supramolecular materials using supramolecular machine". W Molecular Machines, redaktor Zouheir Sekkat. SPIE, 2018. http://dx.doi.org/10.1117/12.2322130.
Pełny tekst źródłaShelton, David P. "Scaling Law For Molecular Hyperpolarizabilities". W Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.mb2.
Pełny tekst źródłaBosshard, Christian. "Organic Nonlinear Optical Materials". W The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctuj2.
Pełny tekst źródłaLee, H., i M. H. Jung. "Molecular Memory Nano-interfaced with Organic Molecules". W 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.a-4-1.
Pełny tekst źródłaCastaño, V. M., J. García-Macedo, A. Mondragón i R. Rodríguez. "Molecular engineering of optical materials". W CAM-94 Physics meeting. AIP, 1995. http://dx.doi.org/10.1063/1.48805.
Pełny tekst źródłaAsselberghs, Inge, Gunther Hennrich, Jon McCleverty, Leila Boubekeur-Lecaque, Benjamin J. Coe i Koen Clays. "Organic materials for molecular switching". W Photonics Europe, redaktorzy Paul L. Heremans, Michele Muccini i Eric A. Meulenkamp. SPIE, 2008. http://dx.doi.org/10.1117/12.779751.
Pełny tekst źródłaRaporty organizacyjne na temat "Molecular materials"
Bayley, Hagan. Molecular Genetic Approaches to Biomolecular Materials. Fort Belvoir, VA: Defense Technical Information Center, listopad 2000. http://dx.doi.org/10.21236/ada391351.
Pełny tekst źródłaFreed, Karl F. Towards the Molecular Design of Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada361070.
Pełny tekst źródłaFreed, Karl F. Towards the Molecular Design of Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, luty 1994. http://dx.doi.org/10.21236/ada283422.
Pełny tekst źródłaBohn, Paul W., i Jonathan V. Sweedler. Three Dimensional Molecular Imaging for Lignocellulosic Materials. Office of Scientific and Technical Information (OSTI), czerwiec 2011. http://dx.doi.org/10.2172/1043043.
Pełny tekst źródłaReilly, Dallas D. Molecular Forensic Science Analysis of Nuclear Materials. Office of Scientific and Technical Information (OSTI), październik 2012. http://dx.doi.org/10.2172/1053139.
Pełny tekst źródłaHutchison, Geoffrey. Genetic Algorithms for Rapid Molecular Materials Screening. Office of Scientific and Technical Information (OSTI), grudzień 2023. http://dx.doi.org/10.2172/2246918.
Pełny tekst źródłaJia, S., T. M. Nenoff, P. Provencio, Y. Qiu, J. A. Shelnutt, S. G. Thoma i J. Zhang. Design Molecular Recognition Materials for Chiral Sensors, Separtations and Catalytic Materials. Office of Scientific and Technical Information (OSTI), listopad 1998. http://dx.doi.org/10.2172/2055.
Pełny tekst źródłaThies, Mark C. The Molecular Design of High-Performance Carbon Materials. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2008. http://dx.doi.org/10.21236/ada488341.
Pełny tekst źródłaFurche, Filipp, Shane M. Parker, Mikko J. Muuronen i Saswata Roy. Non-Adiabatic Molecular Dynamics Methods for Materials Discovery. Office of Scientific and Technical Information (OSTI), kwiecień 2017. http://dx.doi.org/10.2172/1351540.
Pełny tekst źródłaStruzhkin, Viktor V., Wendy L. Mao, Ho-Kwang Mao, Burkhard Militzer i Russell Hemley. Hydrogen Storage in Novel Molecular Materials, Final Report. Office of Scientific and Technical Information (OSTI), maj 2006. http://dx.doi.org/10.2172/977587.
Pełny tekst źródła