Gotowa bibliografia na temat „Molecular magnetic resonance imaging”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Molecular magnetic resonance imaging”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Molecular magnetic resonance imaging"
Modo, Mike, i Steve C. R. Williams. "Molecular Imaging by Magnetic Resonance Imaging". Rivista di Neuroradiologia 16, nr 2_suppl_part2 (wrzesień 2003): 23–27. http://dx.doi.org/10.1177/1971400903016sp207.
Pełny tekst źródłaSosnovik, David E. "Molecular Imaging in Cardiovascular Magnetic Resonance Imaging". Topics in Magnetic Resonance Imaging 19, nr 1 (luty 2008): 59–68. http://dx.doi.org/10.1097/rmr.0b013e318176c57b.
Pełny tekst źródłaTerreno, Enzo, Daniela Delli Castelli, Alessandra Viale i Silvio Aime. "Challenges for Molecular Magnetic Resonance Imaging". Chemical Reviews 110, nr 5 (12.05.2010): 3019–42. http://dx.doi.org/10.1021/cr100025t.
Pełny tekst źródłaLANZA, G., P. WINTER, S. CARUTHERS, A. MORAWSKI, A. SCHMIEDER, K. CROWDER i S. WICKLINE. "Magnetic resonance molecular imaging with nanoparticles". Journal of Nuclear Cardiology 11, nr 6 (grudzień 2004): 733–43. http://dx.doi.org/10.1016/j.nuclcard.2004.09.002.
Pełny tekst źródłaCurtis, R. J. "Magnetic resonance imaging." Annals of the Rheumatic Diseases 50, nr 1 (1.01.1991): 66. http://dx.doi.org/10.1136/ard.50.1.66-c.
Pełny tekst źródłaSosnovik, David E., Matthias Nahrendorf i Ralph Weissleder. "Molecular Magnetic Resonance Imaging in Cardiovascular Medicine". Circulation 115, nr 15 (17.04.2007): 2076–86. http://dx.doi.org/10.1161/circulationaha.106.658930.
Pełny tekst źródłaPeterson, Eric C., i Louis J. Kim. "Magnetic Resonance Imaging at the Molecular Level". World Neurosurgery 73, nr 6 (czerwiec 2010): 604–5. http://dx.doi.org/10.1016/j.wneu.2010.06.044.
Pełny tekst źródłaWinter, Patrick M., i Michael D. Taylor. "Magnetic Resonance Molecular Imaging of Plaque Angiogenesis". Current Cardiovascular Imaging Reports 5, nr 1 (3.01.2012): 36–44. http://dx.doi.org/10.1007/s12410-011-9121-5.
Pełny tekst źródłaRothwell, William P. "Nuclear magnetic resonance imaging". Applied Optics 24, nr 23 (1.12.1985): 3958. http://dx.doi.org/10.1364/ao.24.003958.
Pełny tekst źródłaGoldman, M. "Nuclear Magnetic Resonance Imaging". Physica Scripta T19B (1.01.1987): 476–80. http://dx.doi.org/10.1088/0031-8949/1987/t19b/025.
Pełny tekst źródłaRozprawy doktorskie na temat "Molecular magnetic resonance imaging"
Zhu, Bo Ph D. Massachusetts Institute of Technology. "Acoustical-molecular techniques for magnetic resonance imaging". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103499.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
Magnetic resonance imaging (MRI) is a remarkably flexible diagnostic platform due to the variety of clinically relevant physical, chemical, and biological phenomena it can detect. In addition to the host of endogenous contrast mechanisms available, MRI functionality can be further extended by incorporating exogenous factors to attain sensitivity to new classes of indicators. Molecular imaging with targeted injectable contrast agents and MR elastography with externally delivered acoustic vibrations are two such advancements with increasing clinical significance. Conventionally employed separately, this work explores how exogenous components can interact cooperatively in imaging disease and may be combined to more accurately stage disease progression and generate novel mechanisms of MR contrast, using contrast agents and acoustic stimulation as model systems. We imaged hepatic fibrosis in a rat model and found that collagen-binding paramagnetic contrast agents and shear wave MR elastography had partially uncorrelated staging abilities, due to the disease condition's differential timing of collagen production and its stiff cross-linking. This complementary feature enabled us to form a composite multivariate model incorporating both methods which exhibited superior diagnostic staging over all stages of fibrosis progression. We then integrated acoustics and molecular-targeting agents at a deeper level in the form of a novel contrast mechanism, Acoustically Induced Rotary Saturation (AIRS), which switches "on" and "off" the image contrast due to the agents by adjusting the resonance of the spin-lock condition. This contrast modulation ability provides unprecedented clarity in identifying contrast agent presence as well as sensitive and quantitative statistical measurements via rapidly modulated block design experiments. Finally, we extend the AIRS method and show preliminary results for Saturation Harmonic Induced Rotary Saturation (SHIRS), which detects the second harmonic time-oscillation of iron oxide nanoparticles' magnetization in response to an oscillating applied field around B0. We also illustrate an exploratory method of selectively imaging iron oxide agents by diffusion kurtosis measures of freely diffusing water in solutions of magnetic nanoparticles.
by Bo Zhu.
Ph. D. in Biomedical Engineering
Zurkiya, Omar. "Magnetic Resonance Molecular Imaging Using Iron Oxide Nanoparticles". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19848.
Pełny tekst źródłaDuce, Suzanne Louise. "Nuclear magnetic resonance imaging and spectroscopy of food". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.
Pełny tekst źródłaGallagher, F. A. "Molecular imaging of tumours using dynamic nuclear polarization and magnetic resonance imaging". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599277.
Pełny tekst źródłaGAMBINO, GIUSEPPE. "High-relaxivity systems and molecular imaging probes for Magnetic Resonance Imaging applications". Doctoral thesis, Università del Piemonte Orientale, 2014. http://hdl.handle.net/11579/46171.
Pełny tekst źródłaChow, Mei-kwan April, i 周美君. "Cellular, molecular and metabolic magnetic resonance imaging: techniques and applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44901148.
Pełny tekst źródłaFan, Shujuan, i 樊淑娟. "In vivo cellular and molecular magnetic resonance imaging of brain functions and injuries". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50491489.
Pełny tekst źródłaReynolds, Peter Robert. "Magnetic resonance imaging of cellular and molecular events in inflammation". Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487305.
Pełny tekst źródłaLee, Yik-hin, i 李易軒. "Molecular and cellular investigation of rodent brains by magnetic resonance imaging". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618118.
Pełny tekst źródłapublished_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Jugniot, Natacha. "Molecular imaging of serine protease activity-driven pathologies by magnetic resonance". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0141/document.
Pełny tekst źródłaThis work focuses on substrate-based probes for proteolysis monitoring by Electron Paramagnetic Resonance spectroscopy (EPR) and for in vivo imaging by Overhauser-enhanced Magnetic Resonance (OMRI). More precisely, this work investigates for the first time a family of MRI agents named “line-shifting nitroxide” specific for proteolytic activities. Proteolytic action results in a shift of 5 G in EPR hyperfine coupling constants allowing individual quantification of substrate and product species by EPR and selective excitation by OMRI. Three substrates were worked out, showing enzymatic specificity for neutrophil elastase (MeO-Suc-Ala-Ala-Pro-Val-Nitroxide & Suc-Ala-Ala-Pro-Val-Nitroxide), and for Chymotrypsin/Cathepsin G (Suc-Ala-Ala-Pro-Phe-Nitroxide). Enzymatic constants were remarkably good with globally Km = 28 ± 25 µM and kcat = 19 ± 3 s-1. Ex vivo, the use of NE substrates in OMRI revealed a high contrast in bronchoalveolar lavages of mice under inflammatory stimulus. MRI signal enhancements correlate with the severity of inflammation. Irradiation at the RPE frequency of 5425.6 MHz provided access to the bio-distribution of substrates in vivo and could thus serve as a diagnostic tool. The medium-term perspectives of this work are based on the development of OMRI with very low magnetic fields for human application
Książki na temat "Molecular magnetic resonance imaging"
Awojoyogbe, Bamidele O., i Michael O. Dada. Digital Molecular Magnetic Resonance Imaging. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6370-2.
Pełny tekst źródłaModo, Michel Mathias Jeannot Joseph. i Bulte Jeff W. M, red. Molecular and cellular MR imaging. Boca Raton: CRC Press, 2007.
Znajdź pełny tekst źródłaEdmund, Kim E., i Jackson E. F. 1961-, red. Molecular imaging in oncology: PET, MRI, and MRS. Berlin: Springer, 1999.
Znajdź pełny tekst źródłaDada, Michael O., i Bamidele O. Awojoyogbe. Computational Molecular Magnetic Resonance Imaging for Neuro-oncology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0.
Pełny tekst źródłaS, Suri Jasjit, red. Plaque imaging: Pixel to molecular level. Amsterdam: IOS Press, 2005.
Znajdź pełny tekst źródłaPietro, Carretta, i Lascialfari Alessandra, red. NMR-MRI, þSR and Mössbauer spectroscopies in molecular magnets. Milano: Springer, 2007.
Znajdź pełny tekst źródłaBerliner, Lawrence J. NMR of Paramagnetic Molecules. Boston, MA: Springer US, 1993.
Znajdź pełny tekst źródłaPrasad, Pottumarthi V., red. Magnetic Resonance Imaging. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1597450103.
Pełny tekst źródłaZuurbier, Ria, Johan Nahuis, Sija Geers-van Gemeren, José Dol-Jansen i Tom Dam, red. Magnetic Resonance Imaging. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3.
Pełny tekst źródłaSigal, Robert, D. Doyon, Ph Halimi i H. Atlan. Magnetic Resonance Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73037-5.
Pełny tekst źródłaCzęści książek na temat "Molecular magnetic resonance imaging"
Botnar, René M., W. Yong Kim, Elmar Spuentrup, Tim Leiner, George Katsimaglis, Michael T. Johnstone, Matthias Stuber i Warren J. Manning. "Magnetic resonance imaging of atherosclerosis: classical and molecular imaging". W Cardiovascular Magnetic Resonance, 243–55. Heidelberg: Steinkopff, 2004. http://dx.doi.org/10.1007/978-3-7985-1932-9_24.
Pełny tekst źródłaBurtea, Carmen, Sophie Laurent, Luce Vander Elst i Robert N. Muller. "Contrast Agents: Magnetic Resonance". W Molecular Imaging I, 135–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_7.
Pełny tekst źródłaSchaeffter, Tobias, i Hannes Dahnke. "Magnetic Resonance Imaging and Spectroscopy". W Molecular Imaging I, 75–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_4.
Pełny tekst źródłaNeubauer, Anne Morawski, Patrick Winter, Shelton Caruthers, Gregory Lanza i Samuel A. Wickline. "Magnetic Resonance Molecular Imaging and Targeted Therapeutics". W Cardiovascular Magnetic Resonance Imaging, 649–72. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-306-6_29.
Pełny tekst źródłaChirizzi, Cristina, Valentina Dichiarante, Pierangelo Metrangolo i Francesca Baldelli Bombelli. "Multibranched Superfluorinated Molecular Probes for 19F MRI". W Fluorine Magnetic Resonance Imaging, 61–82. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003530046-3.
Pełny tekst źródłaJackson, Edward F. "Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy". W Targeted Molecular Imaging in Oncology, 30–61. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3505-5_4.
Pełny tekst źródłaGauberti, Maxime, Antoine P. Fournier, Denis Vivien i Sara Martinez de Lizarrondo. "Molecular Magnetic Resonance Imaging (mMRI)". W Preclinical MRI, 315–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_19.
Pełny tekst źródłaKluza, Ewelina, Gustav J. Strijkers i Klaas Nicolay. "Multifunctional Magnetic Resonance Imaging Probes". W Molecular Imaging in Oncology, 151–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10853-2_5.
Pełny tekst źródłaBiegger, Philipp, Mark E. Ladd i Dorde Komljenovic. "Multifunctional Magnetic Resonance Imaging Probes". W Molecular Imaging in Oncology, 189–226. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_6.
Pełny tekst źródłaBoretius, Susann, i Jens Frahm. "Manganese-Enhanced Magnetic Resonance Imaging". W Methods in Molecular Biology, 531–68. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-219-9_28.
Pełny tekst źródłaStreszczenia konferencji na temat "Molecular magnetic resonance imaging"
Hengerer, A. "Molecular Magnetic Resonance Imaging". W 2nd International University of Malaya Research Imaging Symposium (UMRIS) 2005: Fundamentals of Molecular Imaging. Kuala Lumpur, Malaysia: Department of Biomedical Imaging, University of Malaya, 2005. http://dx.doi.org/10.2349/biij.1.1.e7-53.
Pełny tekst źródłaBarker, Alex J., Brant Cage, Stephen Russek, Ruchira Garg, Robin Shandas i Conrad R. Stoldt. "Tailored Nanoscale Contrast Agents for Magnetic Resonance Imaging". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81503.
Pełny tekst źródłaGoyal, Sachin, Can Zhao, Amod Jog, Jerry L. Prince i Aaron Carass. "Improving self super resolution in magnetic resonance images". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor Gimi i Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2295366.
Pełny tekst źródłaLei, Yang, Bing Ji, Tian Liu, Walter J. Curran, Hui Mao i Xiaofeng Yang. "Deep learning-based denoising for magnetic resonance spectroscopy signals". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor S. Gimi i Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580988.
Pełny tekst źródłaChang, Chih-Wei, Matt Goette, Nadja Kadom, Yinan Wang, Jacob Wynne, Tonghe Wang, Tian Liu i in. "Quantification of radiation damage for proton craniospinal irradiation using magnetic resonance imaging". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor S. Gimi i Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2653665.
Pełny tekst źródłaMatheson, Alexander M., Grace Parraga i Ian A. Cunningham. "A linear systems description of multi-compartment pulmonary 129Xe magnetic resonance imaging methods". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor S. Gimi i Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580947.
Pełny tekst źródłaJeong, Jiwoong J., Yang Lei, Karen Xu, Tian Liu, Hyunsuk Shim, Walter J. Curran, Hui-Kuo Shu i Xiaofeng Yang. "Deep learning-based brain tumor bed segmentation for dynamic magnetic resonance perfusion imaging". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor S. Gimi i Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580792.
Pełny tekst źródłaStuker, Florian, Christof Baltes, Katerina Dikaiou, Divya Vats, Lucio Carrara, Edoardo Charbon, Jorge Ripoll i Markus Rudin. "A Novel Hybrid Imaging System for Simultaneous Fluorescence Molecular Tomography and Magnetic Resonance Imaging". W Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btud1.
Pełny tekst źródłaPereira, Danilo R., Larissa Ganaha, Simone Appenzeller i Leticia Rittner. "Open-source toolbox for analysis and spectra quality control of magnetic resonance spectroscopic imaging". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor S. Gimi i Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2582186.
Pełny tekst źródłaMoreno, Ramon A., Marina F. S. de Sá Rebelo, Talles Carvalho, Antonildes N. Assunção, Roberto N. Dantas, Renata do Val, Angela S. Marin, Adriano Bordignom, Cesar H. Nomura i Marco A. Gutierrez. "A combined deep-learning approach to fully automatic left ventricle segmentation in cardiac magnetic resonance imaging". W Biomedical Applications in Molecular, Structural, and Functional Imaging, redaktorzy Barjor Gimi i Andrzej Krol. SPIE, 2019. http://dx.doi.org/10.1117/12.2512895.
Pełny tekst źródłaRaporty organizacyjne na temat "Molecular magnetic resonance imaging"
Bar-Shir, Amnon. Novel molecular architectures for “multicolor” magnetic resonance imaging. The Israel Chemical Society, styczeń 2023. http://dx.doi.org/10.51167/ice000017.
Pełny tekst źródłaRussek, Stephen E. Magnetic Resonance Imaging Biomarker Calibration Service:. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.sp.250-100.
Pełny tekst źródłaSchweizer, M. Developments in boron magnetic resonance imaging (MRI). Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/421332.
Pełny tekst źródłaSchmidt, D. M., i M. A. Espy. Low-field magnetic resonance imaging of gases. Office of Scientific and Technical Information (OSTI), listopad 1998. http://dx.doi.org/10.2172/674672.
Pełny tekst źródłaBronskill, Michael J., Paul L. Carson, Steve Einstein, Michael Koshinen, Margit Lassen, Seong Ki Mun, William Pavlicek i in. Site Planning for Magnetic Resonance Imaging Systems. AAPM, 1986. http://dx.doi.org/10.37206/19.
Pełny tekst źródłaBudakian, Raffi. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2013. http://dx.doi.org/10.21236/ada591583.
Pełny tekst źródłaHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI Knowledge, marzec 2021. http://dx.doi.org/10.18591/bjuik.0731.
Pełny tekst źródłaHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI knowledge, marzec 2021. http://dx.doi.org/10.18591/bjuik.0159.v2.
Pełny tekst źródłaSchmidt, D. M., J. S. George, S. I. Penttila i A. Caprihan. Nuclear magnetic resonance imaging with hyper-polarized noble gases. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/534499.
Pełny tekst źródłaBotto, R. E., i G. D. Cody. Magnetic resonance imaging of solvent transport in polymer networks. Office of Scientific and Technical Information (OSTI), luty 1995. http://dx.doi.org/10.2172/26588.
Pełny tekst źródła