Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Molecular Energy - Dynamical Correlation.

Rozprawy doktorskie na temat „Molecular Energy - Dynamical Correlation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 19 najlepszych rozpraw doktorskich naukowych na temat „Molecular Energy - Dynamical Correlation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Martins, Marcio Marques. "Influência de parâmetros moleculares em funções de correlação temporal na dinâmica de solvatação mecânica". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2004. http://hdl.handle.net/10183/6896.

Pełny tekst źródła
Streszczenie:
No presente trabalho descrevemos nossos resultados relativos à investigação da dinâmica de solvatação mecânica por meio de simulações por dinâmica molecular, respeitando o regime da resposta linear, em sistemas-modelo de argônio líquido com um soluto monoatômico ou diatômico dissolvido. Estudamos sistematicamente a influência dos parâmetros moleculares dos solutos (tamanho, polarizabilidade) e da densidade frente a vários modelos de solvatação. Funções de Correlação Temporal da Energia de Solvatação foram calculadas com relação à correlações de n-corpos (n = 2; 3) distinguindo interações repulsivas e atrativas para ambos os sistemas líquidos. Também obtivemos segundas derivadas temporais dessas funções referindo-se à parcelas translacionais, rotacionais e roto-translacionais na solução do diatômico. Encontramos que funções de correlação temporal coletivas podem ser razoavelmente bem aproximadas por correlações binárias a densidades baixas e, a densidades altas, correlações ternárias tornam-se mais importantes produzindo um descorrelacionamento mais rápido das funções coletivas devido a efeitos de cancelamento parciais. As funções de correlação para interações repulsivas e atrativas exibem comportamentos dinâmicos independentes do modelo de solvatação devido a fatores de escalonamento linear que afetam apenas as amplitudes das dessas funções de correlação temporal. Em geral, os sistemas com grau de liberdade rotacional apresentam tempos de correlação mais curtos para a dinâmica coletiva e tempos de correlação mais longos para as funções binárias e ternárias. Finalmente, esse estudo mostra que os sistemas contendo o diatômico relaxam-se predominantemente por mecanismos translacionais binários em modelos de solvatação envolvendo alterações apenas na polarizabilidade do soluto, e por mecanismos rotacionais atrativos binários em modelos envolvendo alterações no comprimento de ligação.
In the present work, we describe our results concerning our molecular dynamics investigation of the mechanical solvation dynamics within the linear response regime in model systems composed by liquid argon with a monoatomic or diatomic solute. The effect of molecular parameters (size, polarizability) and density has been elucidated for various solvation models. Time Correlation Functions for the solvation energy were calculated and separated into n-body (n = 2; 3) contributions distinguishing repulsive and attractive interactions in both liquid systems. In addition, we computed second time derivatives of these functions in order to describe translational, rotational, and roto-translational portions in the solutions containing the diatomics. We found that collective time correlation functions are well described by binary correlations at low liquid densities and, at high densities, ternary correlations become more important producing faster decaying collective time correlation functions due to partial cancellation effects. The repulsive and attractive time correlation functions exhibit a dynamic behavior that is independent on the solvation model due to linear scaling factors that only affect the absolute amplitudes of these functions. In general, the systems involving a rotational degree of freedom furnish smaller correlation times for the collective solvation dynamics, but stronger correlated two-body and three-body terms. Finally, this study shows that the solvation dynamics for the solution containing the diatomics relaxes predominatly by binary translational mechanisms when solvation models involving changes only in the polarizability parameter are considered. Binary attractive rotational mechanism become important in models with changes in the bond length.
Style APA, Harvard, Vancouver, ISO itp.
2

Park, Chanbum. "Structure, dynamics and phase behavior of concentrated electrolytes for applications in energy storage devices". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22389.

Pełny tekst źródła
Streszczenie:
Diese Arbeit widmet sich der Untersuchung der dynamischen und strukturellen Eigenschaften sowie des Phasenverhaltens konzentrierter flüssiger Elektrolyte und ihrer Anwendung in Energiespeichern mittels Methoden der statistischen Mechanik und mithilfe atomistischer Molekulardynamik (MD) Simulationen. Zuerst untersuchen wir die Struktur-Eigenschafts-Beziehungen in konzentrierten Elektrolytlösungen wie sie in Lithium-Schwefel (Li/S), durch wir ein MD Simulationsmodell repräsentativer state-of-the-art Elektrolyt-Systeme für Li/S-Batterien bestehend aus Polysulfiden, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) und LiNO 3 Elektrolyten mit jeweils unterschiedlichen Kettenlängen gemischt in organischen Lösungsmitteln aus 1,2-dimethoxyethane and 1,3-dioxolane erstellen. Als Zweites befassen wir uns mit der Phasenseparation, die auftritt, wenn sich die physikalisch-chemischen Eigenschaften flüssiger Gemische voneinander unterscheiden. Diese Systeme bestehen üblicherweise aus einem konzentrierten anorganischen Salz und einer ionischen Flüssigkeit. In dieser Arbeit untersuchen wir eine Vielfalt von hochkonzentrierten wässrigen Elektrolytlösungen, die aus unterschiedlichen Zusammensetzungen von LiCl und LiTFSI bestehen. Daraufhin beantworten wir die Frage, wie unterschiedlich die Komponenten in der wässrigen Lösung gemischt sein sollten, damit eine solche flüssig-flüssig-Phasentrennung stattfinden kann. Als letztes untersuchen wir die Ladungsabschirmung, die ein grundlegendes Phänomen ist, das die Struktur von Elektrolyten im Bulk und an Grenzflächen bestimmt. Wir haben in dieser Arbeit die Abschirmlängen für verschiedene Elektrolyte von niedrigen bis zu hohen Konzentrationen untersucht.
Electrolytes can be found in numerous applications in daily life as well as in scientific research. The increases in demand for energy-storage systems, such as fuel cells, supercapacitors and batteries in which liquid electrolyte properties are critical for optimal function, draw critical attention to the physical and chemical properties of electrolytes. Those energy-storage devices contain intermediate or highly concentrated electrolytes where established theories, like the Debye-Hückel (DH) theory, are not applicable. Despite the efforts to describe the physical properties of intermediate or highly concentrated electrolytes, theoretical atomistic-level studies are still lacking. This thesis is devoted to critically investigate the transport/structural properties and a phase behavior of concentrated liquid electrolytes and their application in energy-storage devices, using statistical mechanics and atomistic molecular dynamics (MD) simulations. Firstly, we investigate the structure-property relationship in concentrated electrolyte solutions in next-generation lithium-sulfur (Li/S) batteries. Secondly, phase separation may exist if the physio-chemical properties of liquid mixtures are very different. Recently, the coexistence phase of two aqueous solutions of different salts at high concentrations was found, called aqueous biphasic systems. We explore a wide range of compositions at room temperature for highly concentrated aqueous electrolytes solutions that consist of LiCl and LiTFSI. Lastly, charge screening is a fundamental phenomenon that governs the structure of liquid electrolytes in the bulk and at interfaces. From the DH theory, the screening length is expected to be extremely small in highly concentrated electrolytes. Yet, recent experiments show unexpectedly high screening lengths in those. This intriguing phenomenon has prompted a new set of theoretical works. We investigate the screening lengths for various electrolytes from low to high concentrations.
Style APA, Harvard, Vancouver, ISO itp.
3

Voloshina, Elena, Denis Usvyat, Martin Schütz, Yuriy Dedkov i Beate Paulus. "On the physisorption of water on graphene: a CCSD(T) study". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138776.

Pełny tekst źródła
Streszczenie:
The electronic structure of the zero-gap two-dimensional graphene has a charge neutrality point exactly at the Fermi level that limits the practical application of this material. There are several ways to modify the Fermi-level-region of graphene, e.g. adsorption of graphene on different substrates or different molecules on its surface. In all cases the so-called dispersion or van der Waals interactions can play a crucial role in the mechanism, which describes the modification of electronic structure of graphene. The adsorption of water on graphene is not very accurately reproduced in the standard density functional theory (DFT) calculations and highly-accurate quantum-chemical treatments are required. A possibility to apply wavefunction-based methods to extended systems is the use of local correlation schemes. The adsorption energies obtained in the present work by means of CCSD(T) are much higher in magnitude than the values calculated with standard DFT functional although they agree that physisorption is observed. The obtained results are compared with the values available in the literature for binding of water on the graphene-like substrates
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Style APA, Harvard, Vancouver, ISO itp.
4

Voloshina, Elena, Denis Usvyat, Martin Schütz, Yuriy Dedkov i Beate Paulus. "On the physisorption of water on graphene: a CCSD(T) study". Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27779.

Pełny tekst źródła
Streszczenie:
The electronic structure of the zero-gap two-dimensional graphene has a charge neutrality point exactly at the Fermi level that limits the practical application of this material. There are several ways to modify the Fermi-level-region of graphene, e.g. adsorption of graphene on different substrates or different molecules on its surface. In all cases the so-called dispersion or van der Waals interactions can play a crucial role in the mechanism, which describes the modification of electronic structure of graphene. The adsorption of water on graphene is not very accurately reproduced in the standard density functional theory (DFT) calculations and highly-accurate quantum-chemical treatments are required. A possibility to apply wavefunction-based methods to extended systems is the use of local correlation schemes. The adsorption energies obtained in the present work by means of CCSD(T) are much higher in magnitude than the values calculated with standard DFT functional although they agree that physisorption is observed. The obtained results are compared with the values available in the literature for binding of water on the graphene-like substrates.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Style APA, Harvard, Vancouver, ISO itp.
5

Suba, Slaven L. "Molecular correlation energy, density functional and quantum field approaches". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq30394.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hagy, Matthew Canby. "Dynamical simulation of structured colloidal particles". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50328.

Pełny tekst źródła
Streszczenie:
In this thesis, computer simulations are used to study the properties of new colloidal systems with structured interactions. These are pair interactions that include both attraction and repulsion. Structured colloids differ from conventional colloids in which the interactions between particles are either strictly attractive or strictly repulsive. It is anticipated that these novel interactions will give rise to new microscopic structure and dynamics and therefore new material properties. Three classes of structured interactions are considered: radially structured interactions with an energetic barrier to pair association, Janus surface patterns with two hemispheres of different surface charge, and striped surface patterns. New models are developed to capture the structured interactions of these novel colloid systems. Dynamical computer simulations of these models are performed to quantify the effects of structured interactions on colloid properties. The results show that structured interactions can lead to unexpected particle ordering and novel dynamics. For Janus and striped particles, the particle order can be captured with simpler isotropic coarse-grained models. This relates the static properties of these new colloids to conventional isotropically attractive colloids (e.g. depletion attracting colloids). In contrast, Janus and striped particles are found to have substantially slower dynamics than isotropically attractive colloids. This is explained by the observation of longer-duration reversible bonds between pairs of structured particles. Dynamical mapping methods are explored to relates the dynamics of these structured colloids to isotropically attractive colloids. These methods could also facilitate future nonequilibrium simulation of structured colloids with computationally efficient coarse-grained models.
Style APA, Harvard, Vancouver, ISO itp.
7

Pounds, Andrew J. "A generalized discrete dynamical search method for locating minimum energy molecular geometries". Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/27144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gordon, Sean Dennis Steven. "Two and three vector correlations in the rotationally inelastic scattering of state-selected NO(X)". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:ec0f133b-b2ef-482c-b90c-59fc313c8baa.

Pełny tekst źródła
Streszczenie:
In this thesis, an experimental and theoretical study of two and three vector correlations in the inelastic scattering of NO(X) with various rare gas atoms is presented. Vector correlations for a selection of rare gas systems were determined experimentally, and the observations were interpreted using a variety of classical and quantum mechanical models. The experiment is able to provide state-to-state resolution of the dynamics by means of an electrostatic hexapole and 1+1' resonantly enhanced multi-photon ionisation (REMPI). The simplest vector correlation of interest is the differential cross section (DCS), given by the k-k' correlation. The DCSs were determined experimentally for the NO(X)--Kr and NO(X)--Xe collision systems, both characterised by the relatively deep (≈140cm-1) attractive well and large extent of the attractive potential. The agreement between the experimental angular distributions and quantum mechanical DCS is very good for both systems. Classical calculations fail to correctly reproduce the form and magnitude of the DCS for either system, reflecting the inherently quantum mechanical nature of the collision. The classical calculations do however provide mechanistic insight into regions where the attractive part of the potential plays an important role in determining the dynamics. In order to investigate narrow angular features in the forward scattered direction, several experimental improvements to molecular beams and the detection ion-optic stack were made. Investigation into these structures revealed a strong contribution from molecular diffraction into the classical shadow of the NO(X), and the simple Fraunhofer model revealed a preference for scattering from an individual m→m' sub-state. Such measurements are in a region of the DCS where scattering is forbidden classically, and reveal the purely quantum nature of the collision interaction in the forward scattered direction. The low order k-k' correlation was then extended by using linearly or circularly polarised laser excitation. The interaction of the light with the molecular dipole allows the measurement of the k-k'-j' correlation. When linearly polarised light was used for the excitation laser, two of the rank two p{2}q(θ) renormalised polarisation dependent differential cross sections (PDDCSs), which describe rotational alignment, were obtained. With circularly polarised light, the rank one p{1}1-(θ) renormalised PDDCSs describing rotational orientation were determined. The collision induced alignment in NO(X)--Xe scattering was found to be well reproduced by classical and impulsive theories, highlighting the fact that the alignment is dominated by the propensity for the projection of j onto the kinematic apse to be conserved. The attractive part of the potential does augment the alignment renormalised PDDCSs, and this is most evident in states with strong features of the attractive part of the potential such as ℓ-type rainbows. The orientation is more strongly influenced by the attractive part of the potential and is also influenced by parity. In addition to the parity effect, there exist two limiting classical mechanisms which govern the orientation, one caused by attraction and the other repulsion. Finally, the bond axis of the NO(X) can be oriented by means of hexapole state selection combined with adiabatic orientation using a set of guiding rods. The integral steric effect, an r-k correlation, was measured for the NO(X)--Kr and NO(X)--Ar spin-orbit changing systems. There are large oscillations in the sign of the steric asymmetry which occur for scattering with the various rare gases. There are also large differences between the rare gases as the potentials become more attractive, and more isotropic. The steric asymmetry is well reproduced by quantum mechanics, however, a classical mechanism becomes dominant at high Δj.
Style APA, Harvard, Vancouver, ISO itp.
9

Lott, Geoffrey Adam 1980. "Probing local conformation and dynamics of molecular complexes using phase-selective fluorescence correlation and coherence spectroscopy". Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10914.

Pełny tekst źródła
Streszczenie:
xv, 177 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
When two or more fluorescent chromophores are closely spaced in a macromolecular complex, dipolar coupling leads to delocalization of the excited states, forming excitons. The relative transition frequencies and magnitudes are sensitive to conformation, which can then be studied with optical spectroscopy. Non-invasive fluorescence spectroscopy techniques are useful tools for the study of dilute concentrations of such naturally fluorescent or fluorescently labeled biological systems. This dissertation presents two phase-selective fluorescence spectroscopy techniques for the study of dynamical processes in bio-molecular systems across a wide range of timescales. Polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS) is a novel phase-selective fluorescence spectroscopy for simultaneous study of translational and conformational dynamics. We utilize modulated polarization and intensity gratings with phase-sensitive signal collection to monitor the collective fluctuations of an ensemble of fluorescent molecules. The translational and conformational dynamics can be separated and analyzed separately to generate 2D spectral densities and joint probability distributions. We present results of PM-FICS experiments on DsRed, a fluorescent protein complex. Detailed information on thermally driven dipole-coupled optical switching pathways is found, for which we propose a conformation transition mechanism. 2D phase-modulation electronic coherence spectroscopy is a third-order nonlinear spectroscopy that uses collinear pulse geometry and acousto-optic phase modulation to isolate rephasing and nonrephasing contributions to the collected fluorescence signal. We generate 2D spectra, from which we are able to determine relative dipole orientations, and therefore structural conformation, in addition to detailed coupling information. We present results of experiments on magnesium tetraphenylporphyrin dimers in lipid vesicle bilayers. The 2D spectra show clearly resolved diagonal and off-diagonal features, evidence of exciton behavior. The amplitudes of the distinct spectral features change on a femtosecond timescale, revealing information on time-dependent energy transfer dynamics. This dissertation includes co-authored and previously published material.
Committee in charge: Hailin Wang, Chairperson, Physics; Andrew Marcus, Advisor, Chemistry; Stephen Gregory, Member, Physics; Michael Raymer, Member, Physics; Marina Guenza, Outside Member, Chemistry
Style APA, Harvard, Vancouver, ISO itp.
10

Somasundaram, Theepaharan. "Simulation studies of molecular transport across the liquid-gas interface". Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314223.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ruscher, Céline. "The Voronoi liquid : a new model to probe the glass transition". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE027/document.

Pełny tekst źródła
Streszczenie:
Comprendre l’origine microscopique du ralentissement de la dynamique au voisinage de la transition vitreuse reste l’un des problèmes fondamentaux de la physique de la matière condensée. Au cours de ce travail, nous introduisons un nouveau modèle de liquide, appelé liquide de Voronoï, et dont les interactions sont directement reliées aux propriétés géométriques des tessellations de Voronoï. Pour cette classe de liquides, les interactions sont à plusieurs corps et agissent de telle sorte que le système est toujours sous tension tout en restant stable. Le but de ce travail est d’étudier un mélange binaire du liquide de Voronoï et de voir de quelles façons ces interactions exotiques affectent le scénario habituel de la transition vitreuse. Tout au long de ce travail, nous caractérisons le liquide de Voronoï bidisperse théoriquement et par le biais des simulations numériques. Nous proposons également des comparaisons avec des liquides de Lennard-Jones surfondus bien décrit dans la littérature
Understanding the origin of the important slowing down of the dynamics near glass transition is still one of the remaining fundamental problems of condensed matter physics. During this work we introduced a brand-new model of liquids named Voronoi liquid, whose interactions are directly related to the geometrical properties of Voronoi tessellations. For these class of liquids interactions are intrinsically manybody and act in such a way that the liquid is always under tension but remains stable. The aim of this work is to use a binary mixture of the Voronoi liquid to see to what extend these exotic interactions may affect the classical scenario of glass transition. Throughout this work we characterize theoretically and by mean of numerical simulation the bidisperse Voronoi liquid. Comparisons with well-known Lennard-Jones glass formers are systematically performed
Style APA, Harvard, Vancouver, ISO itp.
12

Rousset, Mathias. "Méthodes de "Population Monte-Carlo'' en temps continu est physique numérique". Toulouse 3, 2006. http://www.theses.fr/2006TOU30251.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, nous nous intéressons aux méthodes numériques probabilistes dites de Population Monte-Carlo, du point de vue du temps continu. Ces méthodes PMC se ramènent au calcul séquentiel de moyennes pondérées de trajectoires Markoviennes. Nous démontrons la convergence (vers la fonction propre principale des opérateurs de Schrödinger) en temps long de la variance et du biais de cette méthode avec la bonne vitesse en 1/N. Ensuite, nous considérons le problème de l'échantillonnage séquentiel d'un flot continu de mesures de Boltzmann. Pour cela, à partir d'une dynamique Markovienne arbitraire, nous associons une dynamique renversée dans le temps dont la loi pondérée par une moyenne trajectorielle de Feynman-Kac explicitement calculable redonne la dynamique initiale ainsi que la mesure de Boltzmann à calculer. Enfin, nous généralisons ce problème au cas où la dynamique est due à l'évolution dans le temps de contraintes rigides sur les configurations possibles du processus. Nous calculons exactement les poids associés, qui font intervenir la courbure locale des sous-variétés générées par les contraintes.
In this dissertation, we focus on stochastic numerical methods of Population Monte-Carlo type, in the continuous time setting. These PMC methods resort to the sequential computation of averages of weighted Markovian paths. The practical implementation rely then on the time evolution of the empirical distribution of a system of N interacting walkers. We prove the long time convergence (towards Schrödinger groundstates) of the variance and bias of this method with the expected 1/N rate. Next, we consider the problem of sequential sampling of a continuous flow of Boltzmann measures. For this purpose, starting with any Markovian dynamics, we associate a second dynamics in reversed time whose law (weighted by a computable Feynman-Kac path average) gives out the original dynamics as well as the target Boltzmann measure. Finally, we generalize the latter problem to the case where the dynamics is caused by evolving rigid constraints on the positions of the process. We compute exactly the associated weights, which resorts to the local curvature of the manifold defined by the constraints
Style APA, Harvard, Vancouver, ISO itp.
13

Taylor, James. "Objective Approaches to Single-Molecule Time Series Analysis". Thesis, 2012. http://hdl.handle.net/1911/71695.

Pełny tekst źródła
Streszczenie:
Single-molecule spectroscopy has provided a means to uncover pathways and heterogeneities that were previously hidden beneath the ensemble average. Such heterogeneity, however, is often obscured by the artifacts of experimental noise and the occurrence of undesired processes within the experimental medium. This has subsequently caused in the need for new analytical methodologies. It is particularly important that objectivity be maintained in the development of new analytical methodology so that bias is not introduced and the results improperly characterized. The research presented herein identifies two such sources of experimental uncertainty, and constructs objective approaches to reduce their effects in the experimental results. The first, photoblinking, arises from the occupation of dark electronic states within the probe molecule, resulting in experimental data that is distorted by its contribution. A method based in Bayesian inference is developed, and is found to nearly eliminate photoblinks from the experimental data while minimally affecting the remaining data and maintaining objectivity. The second source of uncertainty is electronic shot-noise, which arises as a result of Poissonian photon collection. A method based in wavelet decomposition is constructed and applied to simulated and experimental data. It is iii found that, while making only one assumption, that photon collection is indeed a Poisson process, up to 75% of the shot-noise contribution may be removed from the experimental signal by the wavelet-based procedure. Lastly, in an effort to connect model-based approaches such as molecular dynamics simulation to model-free approaches that rely solely on the experimental data, a coarse-grained molecular model of a molecular ionic fluorophore diffusing within an electrostatically charged polymer brush is constructed and characterized. It is found that, while the characteristics of the coarse-grained simulation compare well with atomistic simulations, the model is lacking in its representation of the electrostatically-driven behavior of the experimental system.
Style APA, Harvard, Vancouver, ISO itp.
14

Ghosh, Amit. "Structure-Function Correlations In Aminoacyl tRNA Synthetases Through The Dynamics Of Structure Network". Thesis, 2008. https://etd.iisc.ac.in/handle/2005/822.

Pełny tekst źródła
Streszczenie:
Aminoacyl-tRNA synthetases (aaRSs) are at the center of the question of the origin of life and are essential proteins found in all living organisms. AARSs arose early in evolution to interpret genetic code and are believed to be a group of ancient proteins. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. These enzymes ensure the fidelity of transfer of genetic information from the DNA to the protein. They are responsible for attaching amino acid residues to their cognate tRNA molecules by virtue of matching the nucleotide triplet, which is the first step in the protein synthesis. The translation of genetic code into protein sequence is mediated by tRNA, which accurately picks up the cognate amino acids. The attachment of the cognate amino acid to tRNA is catalyzed by aaRSs, which have binding sites for the anticodon region of tRNA and for the amino acid to be attached. The two binding sites are separated by ≈ 76 Å and experiments have shown that the communication does not go through tRNA (Gale et al., 1996). The problem addressed here is how the information of binding of tRNA anticodon near the anticodon binding site is communicated to the active site through the protein structure. These enzymes are modular with distinct domains on which extensive kinetic and mutational experiments and supported by structural data are available, highlighting the role of inter-domain communication (Alexander and Schimmel, 2001). Hence these proteins present themselves as excellent systems for in-silico studies. Various methods involved for the construction of protein structure networks are well established and analyzed in a variety of ways to gain insights into different aspects of protein structure, stability and function (Kannan and Vishveshwara, 1999; Brinda and Vishveshwara, 2005). In the present study, we have incorporated network parameters for the analysis of molecular dynamics (MD) simulation data, representing the global dynamic behavior of protein in a more elegant way. MD simulations have been performed on the available (and modeled) structures of aaRSs bound to a variety of ligands, and the protein structure networks (PSN) of non-covalent interactions have been characterized in dynamical equilibrium. The changes in the structure networks are used to understand the mode of communication, and the paths between the two sites of interest identified by the analysis of the shortest path. The allosteric concept has played a key role in understanding the biological functions of aaRSs. The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. We have explored the conformational changes in the complexes of aaRSs through novel parameters such as cliques and communities (Palla et al., 2005), which identify the rigid regions in the protein structure networks (PSNs) constructed from the non-covalent interactions of amino acid side chains. The thesis consists of 7 chapters. The first chapter constitutes the survey of the literature and also provides suitable background for this study. The aims of the thesis are presented in this chapter. Chapter 2 describes various techniques employed and the new techniques developed for the analysis of PSNs. It includes a brief description of well -known methods of molecular dynamics simulations, essential dynamics, and cross correlation maps. The method used for the construction of graphs and networks is also described in detail. The incorporation of network parameters for the analysis of MD simulation data are done for the first time and has been applied on a well studied protein lysozyme, as described in chapter 3. Chapter 3 focuses on the dynamical behavior of protein structure networks, examined by considering the example of T4-lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein with explicit water molecules at 300K and at higher temperatures (400K, 500K) respectively. Three simulations of 10ns duration have been performed at 500K to ensure the validity of the results. The snapshots of the protein structure from the simulations are represented as Protein Structure Networks (PSN) of non-covalent interactions. The strength of the non-covalent interaction is evaluated and used as an important criterion in the construction of edges. The profiles of the network parameters such as the degree distribution and the size of the largest cluster (giant component) have been examined as a function of interaction strength (Ghosh et al., 2007). We observe a critical strength of interaction (Icritical) at which there is a transition in the size of the largest cluster. Although the transition profiles at all temperatures show behavior similar to those found in the crystal structures, the 500K simulations show that the non-native structures have lower Icritical values. Based on the interactions evaluated at Icritical value, the folding/unfolding transition region has been identified from the 500K simulation trajectories. Furthermore, the residues in the largest cluster obtained at interaction strength higher than Icritical have been identified to be important for folding. Thus, the compositions of the top largest clusters in the 500K simulations have been monitored to understand the dynamical processes such as folding/unfolding and domain formation/disruption. The results correlate well with experimental findings. In addition, the highly connected residues in the network have been identified from the 300K and 400K simulations and have been correlated with the protein stability as determined from mutation experiments. Based on these analyses, certain residues, on which experimental data is not available, have been predicted to be important for the folding and the stability of the protein. The method can also be employed as a valuable tool in the analysis of MD simulation data, since it captures the details at a global level, which may elude conventional pair-wise interaction analysis. After standardizing the concept of dynamical network analysis using Lysozyme, it was applied to our system of interest, the aaRSs. The investigations carried out on Methionyl-tRNA synthetases (MetRS) are presented in chapter 4. This chapter is divided into three parts: Chapter 4A deals with the introduction to aminoacyl tRNA synthetases (aaRS). Classification and functional insights of aaRSs obtained through various studies are presented. Chapter 4B is again divided into parts: BI and BII. Chapter 4BI elucidates a new technique developed for finding communication pathways essential for proper functioning of aaRS. The enzymes of the family of tRNA synthetases perform their functions with high precision, by synchronously recognizing the anticodon region and the amino acylation region, which is separated by about 70Å in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modelled the structure of E.coli Methionyl tRNA synthetase, which is complexed with tRNA and activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross correlations between the residues in MetRS. Furthermore, the network analysis on these structures has been carried out to elucidate the paths of communication between the aminoacyl activation site and the anticodon recognition site (Ghosh and Vishveshwara, 2007). This study has provided the detailed paths of communication, which are consistent with experimental results. A similar study on the (MetRS + activated methionine) and (MetRS+tRNA) complexes along with ligand free-native enzyme has also been carried out. A comparison of the paths derived from the four simulations has clearly shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The method developed here could also be utilized to investigate any protein system where the function takes place through long distance communication. The details of the method of our investigation and the biological implications of the results are presented in this chapter. In chapter 4BII, we have explored the conformational changes in the complexes of E.coli Methionyl tRNA synthetase (MetRS) through novel parameters such as cliques and communities, which identify the rigid regions in the protein structure networks (PSNs). The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. MetRS belongs to the aminoacyl tRNA Synthetases (aaRSs) family that play a crucial role in initiating the protein synthesis process. The network parameters evaluated here on the conformational ensembles of MetRS complexes, generated from molecular dynamics simulations, have enabled us to understand the inter-domain communication in detail. Additionally, the characterization of conformational changes in terms of cliques/communities has also become possible, which had eluded conventional analyses. Furthermore, we find that most of the residues participating in clique/communities are strikingly different from those that take part in long-range communication. The cliques/communities evaluated here for the first time on PSNs have beautifully captured the local geometries in their detail within the framework of global topology. Here the allosteric effect is revealed at the residue level by identifying the important residues specific for structural rigidity and functional flexibility in MetRS. Chapter 4C focuses on MD simulations of Methionyl tRNA synthetase (AmetRS) from a thermophilic bacterium, Aquifex aeolicus. As describe in Chapter 4B, we have explored the communication pathways between the anticodon binding region and the aminoacylation site, and the conformational changes in the complexes through cliques and communities. The two MetRSs from E.coli and Aquifex aeolicus are structurally and sequentially very close to each other. But the communication pathways between anticodon binding region and the aminoacylation site from A. aeolicus have differed significantly with the communication paths obtained from E.coli. The residue composition and cliques/communities structure participating in communication are not similar in the MetRSs of both these organisms. Furthermore the formation of cliques/communities and hubs in the communication paths are more in A. aeolicus compared to E.coli. The participation of structurally homologous linker peptide, essential for orienting the two domains for efficient communication is same in both the organisms although, the residues composition near domain interface regions including the linker peptide is different. Thus, the diversity in the functioning of two different MetRS has been brought out, by comparing the E.coli and Aquifex aeolicus systems. Protein Structure network analysis of MD simulated trajectories of various ligand bound complexes of Escherichia coli Cysteinyl-tRNA synthetase (CysRS) have been discussed in Chapter 5. The modeling of the complex is done by docking the ligand CysAMP into the tRNA bound structure of E.coli Cysteinyl tRNA synthetase. Molecular dynamics simulations have been performed on the modeled structure and the paths of communications were evaluated using a similar method as used in finding communication paths for MetRS enzymes. Compared to MetRS the evaluation of communication paths in CysRS is complicated due to presence of both direct and indirect readouts. The direct and indirect readouts (DR/IR) involve interaction of protein residues with base-specific functional group and sugar-phosphate backbone of nucleic acids respectively. Two paths of communication between the anticodon region and the activation site has been identified by combining the cross correlation information with the protein structure network constructed on the basis of non-covalent interaction. The complete paths include DR/IR interactions with tRNA. Cliques/communities of non-covalently interacting residues imparting structural rigidity are present along the paths. The reduction of cooperative fluctuation due to the presence of community is compensated by IR/DR interaction and thus plays a crucial role in communication of CysRS. Chapter 6 focuses on free energy calculations of aminoacyl tRNA synthetases with various ligands. The free energy contributions to the binding of the substrates are calculated using a method called MM-PBSA (Massova and Kollman, 2000). The binding free energies were calculated as the difference between the free energy of the enzyme-ligand complex, and the free ligand and protein. The ligand unbinding energy values obtained from the umbrella sampling MD correlates well with the ligand binding energies obtained from MM-PBSA method. Furthermore the essential dynamics was captured from MD simulations trajectories performed on E.coli MetRS, A. aeolius MetRS and E.coli CysRS in terms of the eigenvalues. The top two modes account for more than 50% of the motion in essential space for systems E.coli MetRS, A. aeolius MetRS and E.coli CysRS. Population distribution of protein conformation states are looked at the essential plane defined by the two principal components with highest eigenvalues. This shows how aaRSs existed as a population of conformational states and the variation with the addition of ligands. The population of conformational states is converted into Free energy contour surface. From free energy surfaces, it is evident that the E.coli tRNAMet bound MetRS conformational fluctuations are more, which attributes to less rigidity in the complex. Whereas E.coli tRNACys bound CysRS conformational fluctuations are less and this is reflected in the increase in rigidity of the complex as confirmed by its entropic contribution. Future directions have been discussed in the final chapter (Chapter 7). Specifically, it deals with the ab-initio QM/MM study of the enzymatic reaction involved in the active site of E.coli Methionyl tRNA synthetase. To achieve this, two softwares are integrated: the Quantum Mechanics (QM) part includes small ligands and the Molecular Mechanics (MM) part as protein MetRS are handled using CPMD and Gromacs respectively. The inputs for two reactions pathways are prepared. First reaction involves cyclization reaction of homocysteine in the active site of MetRS and the second reaction deals with charging of methionine in the presence of ATP and magnesium ion. These simulations require very high power computing systems and also time of computation is also very large. With the available computational power we could simulate up to 10ps and it is insufficient for analysis. The future direction will involve the simulations of these systems for longer time, followed by the analysis for reaction pathways.
Style APA, Harvard, Vancouver, ISO itp.
15

Ghosh, Amit. "Structure-Function Correlations In Aminoacyl tRNA Synthetases Through The Dynamics Of Structure Network". Thesis, 2008. http://hdl.handle.net/2005/822.

Pełny tekst źródła
Streszczenie:
Aminoacyl-tRNA synthetases (aaRSs) are at the center of the question of the origin of life and are essential proteins found in all living organisms. AARSs arose early in evolution to interpret genetic code and are believed to be a group of ancient proteins. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. These enzymes ensure the fidelity of transfer of genetic information from the DNA to the protein. They are responsible for attaching amino acid residues to their cognate tRNA molecules by virtue of matching the nucleotide triplet, which is the first step in the protein synthesis. The translation of genetic code into protein sequence is mediated by tRNA, which accurately picks up the cognate amino acids. The attachment of the cognate amino acid to tRNA is catalyzed by aaRSs, which have binding sites for the anticodon region of tRNA and for the amino acid to be attached. The two binding sites are separated by ≈ 76 Å and experiments have shown that the communication does not go through tRNA (Gale et al., 1996). The problem addressed here is how the information of binding of tRNA anticodon near the anticodon binding site is communicated to the active site through the protein structure. These enzymes are modular with distinct domains on which extensive kinetic and mutational experiments and supported by structural data are available, highlighting the role of inter-domain communication (Alexander and Schimmel, 2001). Hence these proteins present themselves as excellent systems for in-silico studies. Various methods involved for the construction of protein structure networks are well established and analyzed in a variety of ways to gain insights into different aspects of protein structure, stability and function (Kannan and Vishveshwara, 1999; Brinda and Vishveshwara, 2005). In the present study, we have incorporated network parameters for the analysis of molecular dynamics (MD) simulation data, representing the global dynamic behavior of protein in a more elegant way. MD simulations have been performed on the available (and modeled) structures of aaRSs bound to a variety of ligands, and the protein structure networks (PSN) of non-covalent interactions have been characterized in dynamical equilibrium. The changes in the structure networks are used to understand the mode of communication, and the paths between the two sites of interest identified by the analysis of the shortest path. The allosteric concept has played a key role in understanding the biological functions of aaRSs. The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. We have explored the conformational changes in the complexes of aaRSs through novel parameters such as cliques and communities (Palla et al., 2005), which identify the rigid regions in the protein structure networks (PSNs) constructed from the non-covalent interactions of amino acid side chains. The thesis consists of 7 chapters. The first chapter constitutes the survey of the literature and also provides suitable background for this study. The aims of the thesis are presented in this chapter. Chapter 2 describes various techniques employed and the new techniques developed for the analysis of PSNs. It includes a brief description of well -known methods of molecular dynamics simulations, essential dynamics, and cross correlation maps. The method used for the construction of graphs and networks is also described in detail. The incorporation of network parameters for the analysis of MD simulation data are done for the first time and has been applied on a well studied protein lysozyme, as described in chapter 3. Chapter 3 focuses on the dynamical behavior of protein structure networks, examined by considering the example of T4-lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein with explicit water molecules at 300K and at higher temperatures (400K, 500K) respectively. Three simulations of 10ns duration have been performed at 500K to ensure the validity of the results. The snapshots of the protein structure from the simulations are represented as Protein Structure Networks (PSN) of non-covalent interactions. The strength of the non-covalent interaction is evaluated and used as an important criterion in the construction of edges. The profiles of the network parameters such as the degree distribution and the size of the largest cluster (giant component) have been examined as a function of interaction strength (Ghosh et al., 2007). We observe a critical strength of interaction (Icritical) at which there is a transition in the size of the largest cluster. Although the transition profiles at all temperatures show behavior similar to those found in the crystal structures, the 500K simulations show that the non-native structures have lower Icritical values. Based on the interactions evaluated at Icritical value, the folding/unfolding transition region has been identified from the 500K simulation trajectories. Furthermore, the residues in the largest cluster obtained at interaction strength higher than Icritical have been identified to be important for folding. Thus, the compositions of the top largest clusters in the 500K simulations have been monitored to understand the dynamical processes such as folding/unfolding and domain formation/disruption. The results correlate well with experimental findings. In addition, the highly connected residues in the network have been identified from the 300K and 400K simulations and have been correlated with the protein stability as determined from mutation experiments. Based on these analyses, certain residues, on which experimental data is not available, have been predicted to be important for the folding and the stability of the protein. The method can also be employed as a valuable tool in the analysis of MD simulation data, since it captures the details at a global level, which may elude conventional pair-wise interaction analysis. After standardizing the concept of dynamical network analysis using Lysozyme, it was applied to our system of interest, the aaRSs. The investigations carried out on Methionyl-tRNA synthetases (MetRS) are presented in chapter 4. This chapter is divided into three parts: Chapter 4A deals with the introduction to aminoacyl tRNA synthetases (aaRS). Classification and functional insights of aaRSs obtained through various studies are presented. Chapter 4B is again divided into parts: BI and BII. Chapter 4BI elucidates a new technique developed for finding communication pathways essential for proper functioning of aaRS. The enzymes of the family of tRNA synthetases perform their functions with high precision, by synchronously recognizing the anticodon region and the amino acylation region, which is separated by about 70Å in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modelled the structure of E.coli Methionyl tRNA synthetase, which is complexed with tRNA and activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross correlations between the residues in MetRS. Furthermore, the network analysis on these structures has been carried out to elucidate the paths of communication between the aminoacyl activation site and the anticodon recognition site (Ghosh and Vishveshwara, 2007). This study has provided the detailed paths of communication, which are consistent with experimental results. A similar study on the (MetRS + activated methionine) and (MetRS+tRNA) complexes along with ligand free-native enzyme has also been carried out. A comparison of the paths derived from the four simulations has clearly shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The method developed here could also be utilized to investigate any protein system where the function takes place through long distance communication. The details of the method of our investigation and the biological implications of the results are presented in this chapter. In chapter 4BII, we have explored the conformational changes in the complexes of E.coli Methionyl tRNA synthetase (MetRS) through novel parameters such as cliques and communities, which identify the rigid regions in the protein structure networks (PSNs). The rigidity/plasticity and the conformational population are the two important ideas invoked in explaining the allosteric effect. MetRS belongs to the aminoacyl tRNA Synthetases (aaRSs) family that play a crucial role in initiating the protein synthesis process. The network parameters evaluated here on the conformational ensembles of MetRS complexes, generated from molecular dynamics simulations, have enabled us to understand the inter-domain communication in detail. Additionally, the characterization of conformational changes in terms of cliques/communities has also become possible, which had eluded conventional analyses. Furthermore, we find that most of the residues participating in clique/communities are strikingly different from those that take part in long-range communication. The cliques/communities evaluated here for the first time on PSNs have beautifully captured the local geometries in their detail within the framework of global topology. Here the allosteric effect is revealed at the residue level by identifying the important residues specific for structural rigidity and functional flexibility in MetRS. Chapter 4C focuses on MD simulations of Methionyl tRNA synthetase (AmetRS) from a thermophilic bacterium, Aquifex aeolicus. As describe in Chapter 4B, we have explored the communication pathways between the anticodon binding region and the aminoacylation site, and the conformational changes in the complexes through cliques and communities. The two MetRSs from E.coli and Aquifex aeolicus are structurally and sequentially very close to each other. But the communication pathways between anticodon binding region and the aminoacylation site from A. aeolicus have differed significantly with the communication paths obtained from E.coli. The residue composition and cliques/communities structure participating in communication are not similar in the MetRSs of both these organisms. Furthermore the formation of cliques/communities and hubs in the communication paths are more in A. aeolicus compared to E.coli. The participation of structurally homologous linker peptide, essential for orienting the two domains for efficient communication is same in both the organisms although, the residues composition near domain interface regions including the linker peptide is different. Thus, the diversity in the functioning of two different MetRS has been brought out, by comparing the E.coli and Aquifex aeolicus systems. Protein Structure network analysis of MD simulated trajectories of various ligand bound complexes of Escherichia coli Cysteinyl-tRNA synthetase (CysRS) have been discussed in Chapter 5. The modeling of the complex is done by docking the ligand CysAMP into the tRNA bound structure of E.coli Cysteinyl tRNA synthetase. Molecular dynamics simulations have been performed on the modeled structure and the paths of communications were evaluated using a similar method as used in finding communication paths for MetRS enzymes. Compared to MetRS the evaluation of communication paths in CysRS is complicated due to presence of both direct and indirect readouts. The direct and indirect readouts (DR/IR) involve interaction of protein residues with base-specific functional group and sugar-phosphate backbone of nucleic acids respectively. Two paths of communication between the anticodon region and the activation site has been identified by combining the cross correlation information with the protein structure network constructed on the basis of non-covalent interaction. The complete paths include DR/IR interactions with tRNA. Cliques/communities of non-covalently interacting residues imparting structural rigidity are present along the paths. The reduction of cooperative fluctuation due to the presence of community is compensated by IR/DR interaction and thus plays a crucial role in communication of CysRS. Chapter 6 focuses on free energy calculations of aminoacyl tRNA synthetases with various ligands. The free energy contributions to the binding of the substrates are calculated using a method called MM-PBSA (Massova and Kollman, 2000). The binding free energies were calculated as the difference between the free energy of the enzyme-ligand complex, and the free ligand and protein. The ligand unbinding energy values obtained from the umbrella sampling MD correlates well with the ligand binding energies obtained from MM-PBSA method. Furthermore the essential dynamics was captured from MD simulations trajectories performed on E.coli MetRS, A. aeolius MetRS and E.coli CysRS in terms of the eigenvalues. The top two modes account for more than 50% of the motion in essential space for systems E.coli MetRS, A. aeolius MetRS and E.coli CysRS. Population distribution of protein conformation states are looked at the essential plane defined by the two principal components with highest eigenvalues. This shows how aaRSs existed as a population of conformational states and the variation with the addition of ligands. The population of conformational states is converted into Free energy contour surface. From free energy surfaces, it is evident that the E.coli tRNAMet bound MetRS conformational fluctuations are more, which attributes to less rigidity in the complex. Whereas E.coli tRNACys bound CysRS conformational fluctuations are less and this is reflected in the increase in rigidity of the complex as confirmed by its entropic contribution. Future directions have been discussed in the final chapter (Chapter 7). Specifically, it deals with the ab-initio QM/MM study of the enzymatic reaction involved in the active site of E.coli Methionyl tRNA synthetase. To achieve this, two softwares are integrated: the Quantum Mechanics (QM) part includes small ligands and the Molecular Mechanics (MM) part as protein MetRS are handled using CPMD and Gromacs respectively. The inputs for two reactions pathways are prepared. First reaction involves cyclization reaction of homocysteine in the active site of MetRS and the second reaction deals with charging of methionine in the presence of ATP and magnesium ion. These simulations require very high power computing systems and also time of computation is also very large. With the available computational power we could simulate up to 10ps and it is insufficient for analysis. The future direction will involve the simulations of these systems for longer time, followed by the analysis for reaction pathways.
Style APA, Harvard, Vancouver, ISO itp.
16

Ananthavel, S. P. "Investigations Of Electron States Of Molecular Complexes By UV Photoelectron And Electron Energy Loss Spectroscopies And Ab-initio MO Calculations". Thesis, 1996. https://etd.iisc.ac.in/handle/2005/1945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ananthavel, S. P. "Investigations Of Electron States Of Molecular Complexes By UV Photoelectron And Electron Energy Loss Spectroscopies And Ab-initio MO Calculations". Thesis, 1996. http://etd.iisc.ernet.in/handle/2005/1945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Bhowmick, Somnath. "Phonons And Thermal Transport In Nanostructures". Thesis, 2005. https://etd.iisc.ac.in/handle/2005/1427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Bhowmick, Somnath. "Phonons And Thermal Transport In Nanostructures". Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii