Artykuły w czasopismach na temat „Molecular electronics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Molecular electronics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Molecular electronics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Zotti, Linda A. "Molecular Electronics". Applied Sciences 11, nr 11 (25.05.2021): 4828. http://dx.doi.org/10.3390/app11114828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

McCreery, Richard. "Molecular Electronics". Electrochemical Society Interface 13, nr 1 (1.03.2004): 25–30. http://dx.doi.org/10.1149/2.f05041if.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mirkin, C. A., i M. A. Ratner. "Molecular Electronics". Annual Review of Physical Chemistry 43, nr 1 (październik 1992): 719–54. http://dx.doi.org/10.1146/annurev.pc.43.100192.003443.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bloor, D. "Molecular Electronics". Physica Scripta T39 (1.01.1991): 380–85. http://dx.doi.org/10.1088/0031-8949/1991/t39/061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Heath, James R. "Molecular Electronics". Annual Review of Materials Research 39, nr 1 (sierpień 2009): 1–23. http://dx.doi.org/10.1146/annurev-matsci-082908-145401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

JACOBY, MITCH. "MOLECULAR ELECTRONICS". Chemical & Engineering News 80, nr 24 (17.06.2002): 4. http://dx.doi.org/10.1021/cen-v080n024.p004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Joachim, C., i M. A. Ratner. "Molecular electronics". Proceedings of the National Academy of Sciences 102, nr 25 (14.06.2005): 8800. http://dx.doi.org/10.1073/pnas.0504046102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bhunia, C. T. "Molecular Electronics". IETE Technical Review 13, nr 1 (styczeń 1996): 11–15. http://dx.doi.org/10.1080/02564602.1996.11416569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Munn, Robert. "Molecular Electronics". Physics Bulletin 39, nr 5 (maj 1988): 202–4. http://dx.doi.org/10.1088/0031-9112/39/5/021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bell, D. A. "Molecular electronics". Physics Bulletin 39, nr 8 (sierpień 1988): 303. http://dx.doi.org/10.1088/0031-9112/39/8/003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Heath, James R., i Mark A. Ratner. "Molecular Electronics". Physics Today 56, nr 5 (maj 2003): 43–49. http://dx.doi.org/10.1063/1.1583533.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Hr. "Molecular Electronics". Journal of Molecular Structure 274 (listopad 1992): 316. http://dx.doi.org/10.1016/0022-2860(92)80172-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Calame, Michel, i Christian Schönenberger. "Molecular Electronics". Imaging & Microscopy 8, nr 2 (czerwiec 2006): 37. http://dx.doi.org/10.1002/imic.200790036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

ROTH, SIEGMAR. "Microswitches in molecular electronics-from molecular conductors to molecular electronics". International Journal of Electronics 73, nr 5 (listopad 1992): 1019–26. http://dx.doi.org/10.1080/00207219208925760.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Marqués-González, Santiago, i Paul J. Low. "Molecular Electronics: History and Fundamentals". Australian Journal of Chemistry 69, nr 3 (2016): 244. http://dx.doi.org/10.1071/ch15634.

Pełny tekst źródła
Streszczenie:
The increasing difficulties of meeting ‘Moore’s Law’ rates of progress in conventional semiconductor electronics, coupled with the advent of methods capable of measuring the electronic properties of single molecules in a laboratory setting, have seen a surge of activity in the field of molecular electronics over the last decade. However, the concepts of molecular electronics are far from new, and the basic premise and ideas of molecular electronics have been shadowing those of solid-state semiconductor electronics since the middle of the 20th century. In this Primer Review, we introduce the topic of molecular electronics, drawing on some of the earliest expressions of the fundamental concepts, and summarizing key concepts to provide the interested reader with an entry to this fascinating field of science and emerging technology.
Style APA, Harvard, Vancouver, ISO itp.
16

D'Iorio, M. "Molecular materials for micro-electronics". Canadian Journal of Physics 78, nr 3 (2.04.2000): 231–41. http://dx.doi.org/10.1139/p00-033.

Pełny tekst źródła
Streszczenie:
Molecular organic materials have had an illustrious past but the ability to deposit these as homogeneous thin films has rejuvenated the field and led to organic light-emitting diodes (OLEDs) and the development of an increasing number of high-performance polymers for nonlinear and electronic applications. Whereas the use of organic materials in micro-electronics was restricted to photoresists for patterning purposes, polymeric materials are coming of age as metallic interconnects, flexible substrates, insulators, and semiconductors in all-plastic electronics. The focus of this topical review will be on organic light-emitting devices with a discussion of the most recent developments in electronic devices.PACS Nos.: 85.60Jb, 78.60Fi, 78.55Kz, 78.66Qn, 73.61Ph, 72.80Le
Style APA, Harvard, Vancouver, ISO itp.
17

Reed, M. A. "Molecular-scale electronics". Proceedings of the IEEE 87, nr 4 (kwiecień 1999): 652–58. http://dx.doi.org/10.1109/5.752520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ratner, Mark A. "Introducing molecular electronics". Materials Today 5, nr 2 (luty 2002): 20–27. http://dx.doi.org/10.1016/s1369-7021(02)05226-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Parodi, Mauro, Bruno Bianco i Alessandro Chiabrera. "Toward molecular electronics". Cell Biophysics 7, nr 3 (wrzesień 1985): 215–35. http://dx.doi.org/10.1007/bf02790467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Vuillaume, Dominique. "Molecular-scale electronics". Comptes Rendus Physique 9, nr 1 (styczeń 2008): 78–94. http://dx.doi.org/10.1016/j.crhy.2007.10.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Gryn’ova, G., i C. Corminboeuf. "Noncovalent Molecular Electronics". Journal of Physical Chemistry Letters 9, nr 9 (17.04.2018): 2298–304. http://dx.doi.org/10.1021/acs.jpclett.8b00980.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Langer, J. J., E. Uler i K. Golankiewicz. "Toward molecular electronics". Applied Physics A Solids and Surfaces 43, nr 2 (czerwiec 1987): 139–41. http://dx.doi.org/10.1007/bf00617966.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Kemp, M., V. Mujica i M. A. Ratner. "Molecular electronics: Disordered molecular wires". Journal of Chemical Physics 101, nr 6 (15.09.1994): 5172–78. http://dx.doi.org/10.1063/1.467373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

HUSSAIN, SYED-ARSHAD, i D. BHATTACHARJEE. "LANGMUIR–BLODGETT FILMS AND MOLECULAR ELECTRONICS". Modern Physics Letters B 23, nr 29 (20.11.2009): 3437–51. http://dx.doi.org/10.1142/s0217984909021508.

Pełny tekst źródła
Streszczenie:
Molecular electronics is a new, exciting and interdisciplinary field of research. The main concern of the subject is to exploit the organic materials in electronic and optoelectronic devices. On the other hand, the Langmuir–Blodgett (LB) film deposition technique is one of the best among few methods used to manipulate materials at the molecular level. In this article, the LB film preparation technique is discussed briefly with an emphasis on its application towards molecular electronics.
Style APA, Harvard, Vancouver, ISO itp.
25

Yakhmi, Jatinder V., i Vaishali Bambole. "Molecular Spintronics". Solid State Phenomena 189 (czerwiec 2012): 95–127. http://dx.doi.org/10.4028/www.scientific.net/ssp.189.95.

Pełny tekst źródła
Streszczenie:
The emergence of spintronics (spin-based electronics), which exploits electronic charge as well as the spin degree of freedom to store/process data has already seen some of its fundamental results turned into actual devices during the last decade. Information encoded in spins persists even when the device is switched off; it can be manipulated with and without using magnetic fields and can be written using little energy. Eventually, spintronics aims at spin control of electrical properties (I-V characteristics), contrary to the common process of controlling the magnetization (spins) via application of electrical field. In the meantime, another revolution in electronics appears to be unfolding, with the evolution of Molecular Spintronics which aims at manipulating spins and charges in electronic devices containing one or more molecules, because a long spin lifetime is expected from the very small spin-orbit coupling in organic semiconductors. This futuristic area is fascinating because it promises the integration of memory and logic functions,
Style APA, Harvard, Vancouver, ISO itp.
26

LI, QILIANG. "HYBRID SILICON-MOLECULAR ELECTRONICS". Modern Physics Letters B 22, nr 12 (20.05.2008): 1183–202. http://dx.doi.org/10.1142/s0217984908016054.

Pełny tekst źródła
Streszczenie:
As CMOS technology extends beyond the current technology node, many challenges to conventional MOSFET were raised. Non-classical CMOS to extend and fundamentally new technologies to replace current CMOS technology are under intensive investigation to meet these challenges. The approach of hybrid silicon/molecular electronics is to provide a smooth transition technology by integrating molecular intrinsic scalability and diverse properties with the vast infrastructure of traditional MOS technology. Here we discuss: (1) the integration of redox-active molecules into Si -based structures, (2) characterization and modeling of the properties of these Si /molecular systems, (3) single and multiple states of Si /molecular memory, and (4) applications based on hybrid Si /molecular electronic system.
Style APA, Harvard, Vancouver, ISO itp.
27

Pilkuhn, M. H. "Molecular Electronics: Beyond the Limits of Conventional Electronics". International Journal of Polymeric Materials 44, nr 3-4 (październik 1999): 305–15. http://dx.doi.org/10.1080/00914039908009700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Verdaguer, M. "Molecular Electronics Emerges from Molecular Magnetism". Science 272, nr 5262 (3.05.1996): 698–99. http://dx.doi.org/10.1126/science.272.5262.698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Waldeck, D. H., i D. N. Beratan. "Molecular Electronics: Observation of Molecular Rectification". Science 261, nr 5121 (30.07.1993): 576–77. http://dx.doi.org/10.1126/science.261.5121.576.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Pethrick, Richard A. "Molecular Electronics Electronic Applications of Organic Molecules and Polymers". Interdisciplinary Science Reviews 12, nr 3 (1.09.1987): 278–84. http://dx.doi.org/10.1179/030801887789799042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mayor, Marcel, i Heiko B. Weber. "Molecular Electronics – Integration of Single Molecules in Electronic Circuits". CHIMIA International Journal for Chemistry 56, nr 10 (1.10.2002): 494–99. http://dx.doi.org/10.2533/000942902777680144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Pethrick, Richard A. "Molecular Electronics Electronic Applications of Organic Molecules and Polymers". Interdisciplinary Science Reviews 12, nr 3 (wrzesień 1987): 278–84. http://dx.doi.org/10.1179/isr.1987.12.3.278.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

KANEKO, FUTAO. "Molecular Electronics is Interesting!" Journal of the Institute of Electrical Engineers of Japan 114, nr 1 (1994): 39–44. http://dx.doi.org/10.1541/ieejjournal.114.39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

IWAMOTO, Mitsumasa, i Takashi NAKAGIRI. "Materials for molecular electronics." Nihon Kessho Gakkaishi 28, nr 2 (1986): 188–95. http://dx.doi.org/10.5940/jcrsj.28.188.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Heath, J. R. "More on Molecular Electronics". Science 303, nr 5661 (20.02.2004): 1136c—1137. http://dx.doi.org/10.1126/science.303.5661.1136c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Barker, J. R. "Prospects for Molecular Electronics". Microelectronics International 4, nr 3 (marzec 1987): 19–24. http://dx.doi.org/10.1108/eb044287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Rawlett, Adam M., Theresa J. Hopson, Islamshah Amlani, Ruth Zhang, John Tresek, Larry A. Nagahara, Raymond K. Tsui i Herb Goronkin. "A molecular electronics toolbox". Nanotechnology 14, nr 3 (30.01.2003): 377–84. http://dx.doi.org/10.1088/0957-4484/14/3/305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Hodgkiss, Justin, Eli Zysman-Colman, Simon Higgins, Gemma Solomon, Ioan Bâldea, Ifor Samuel, Latha Venkataraman i in. "Molecular electronics: general discussion". Faraday Discuss. 174 (18.11.2014): 125–51. http://dx.doi.org/10.1039/c4fd90049a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Rakshit, Titash, Geng-Chiau Liang, Avik W. Ghosh i Supriyo Datta. "Silicon-based Molecular Electronics". Nano Letters 4, nr 10 (październik 2004): 1803–7. http://dx.doi.org/10.1021/nl049436t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

KISLOV, V. V., Yu V. GULYAEV, V. V. KOLESOV, I. V. TARANOV, S. P. GUBIN, G. B. KHOMUTOV, E. S. SOLDATOV, I. A. MAXIMOV i L. SAMUELSON. "ELECTRONICS OF MOLECULAR NANOCLUSTERS". International Journal of Nanoscience 03, nr 01n02 (luty 2004): 137–47. http://dx.doi.org/10.1142/s0219581x04001912.

Pełny tekst źródła
Streszczenie:
The molecular nanoclusters proved to be very promising objects for applications in electronics not only because they have absolutely identical chemical structure and allow for bottom to top approach in constructing new electronic devices, but also for the possibility to design and create great variety of such clusters with specific properties. The formation and deposition of mixed Langmuir monolayers composed of inert amphiphile molecular matrix and guest ligand-stabilized metal-core nanoclusters are described. This approach allowed to obtain the ordered stable reproducible planar monolayer and multilayer nanocluster nanostructures on solid substrates. The use of novel polymeric Langmuir monolayers formed by amphiphilic polyelectrolytes and nanoclusters resulted in fabrication of ultimately thin monomolecular nanoscale-ordered stable planar polymeric nanocomposite films. The morphology and electron transport in fabricated nanostructures were studied experimentally using AFM and STM. The effects of single electron tunneling at room temperature through molecular cluster object containing finite number of localized states were theoretically investigated taking into account electron–electron Coulomb interaction. It is shown that tunnel current-bias voltage characteristic of such tunnel junction is characterized by a number of staircase steps equal to the number of cluster's eigenlevels, however the fronts of each steps are asymptotically linear with finite inclination. The analytically obtained current–voltage characteristics are in agreement with experimental results for electron tunneling through molecular nanoclusters at room temperatures.
Style APA, Harvard, Vancouver, ISO itp.
41

Bloor, D. "Prospects for Molecular Electronics". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 234, nr 1 (październik 1993): 1–12. http://dx.doi.org/10.1080/10587259308042893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Lotan, Noah, Gal Ashkenazi, Samuel Tuchman, Sigalit Nehamkin i Samuel Sideman. "Molecular Bio-Electronics Biomaterials". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 236, nr 1 (październik 1993): 95–104. http://dx.doi.org/10.1080/10587259308055214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Scheer, Elke, i Peter Reineker. "Focus on Molecular Electronics". New Journal of Physics 10, nr 6 (30.06.2008): 065004. http://dx.doi.org/10.1088/1367-2630/10/6/065004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Cerofolini, G. F., i E. Romano. "Molecular electronics in silico". Applied Physics A 91, nr 2 (23.02.2008): 181–210. http://dx.doi.org/10.1007/s00339-008-4415-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Sigmund, E., P. Gribi i G. Isenmann. "Concepts in molecular electronics". Applied Surface Science 65-66 (marzec 1993): 342–48. http://dx.doi.org/10.1016/0169-4332(93)90683-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kushmerick, James G., Amy Szuchmacher Blum i David P. Long. "Metrology for molecular electronics". Analytica Chimica Acta 568, nr 1-2 (maj 2006): 20–27. http://dx.doi.org/10.1016/j.aca.2005.12.033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Joachim, C. "Molecular and intramolecular electronics". Superlattices and Microstructures 28, nr 4 (październik 2000): 305–15. http://dx.doi.org/10.1006/spmi.2000.0918.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Michl, Josef. "Molecular and biomolecular electronics". International Journal of Quantum Chemistry 62, nr 2 (1997): 237–38. http://dx.doi.org/10.1002/(sici)1097-461x(1997)62:2<237::aid-qua11>3.0.co;2-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Simon, J., i C. Sirlin. "Mesomorphic molecular materials for electronics, opto-electronics, iono-electronics: Octaalkyl-phthalocyanine derivatives". Pure and Applied Chemistry 61, nr 9 (1.01.1989): 1625–29. http://dx.doi.org/10.1351/pac198961091625.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Herrer, Lucía, Santiago Martín i Pilar Cea. "Nanofabrication Techniques in Large-Area Molecular Electronic Devices". Applied Sciences 10, nr 17 (1.09.2020): 6064. http://dx.doi.org/10.3390/app10176064.

Pełny tekst źródła
Streszczenie:
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii