Artykuły w czasopismach na temat „Molecular dynamics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Molecular dynamics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Molecular dynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Gough, Craig A., Takashi Gojobori i Tadashi Imanishi. "1P563 Consistent dynamic phenomena in amyloidogenic forms of transthyretin : a molecular dynamics study(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S287. http://dx.doi.org/10.2142/biophys.46.s287_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Biyani, Manish, T. Aoyama i K. Nishigaki. "1M1330 Solution structure dynamics of single-stranded oligonucleotides : Experiments and molecular dynamics." Seibutsu Butsuri 42, supplement2 (2002): S76. http://dx.doi.org/10.2142/biophys.42.s76_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Okumura, Hisashi, Satoru G. Itoh i Yuko Okamoto. "1P585 Explicit Symplectic Molecular Dynamics Simulation for Rigid-Body Molecules in the Canonical Ensemble(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S293. http://dx.doi.org/10.2142/biophys.46.s293_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sugiyama, Ayumu, Tetsunori Yamamoto, Hidemi Nagao, Keigo Nishikawa, Nobutaka Numoto, Kunio Miki i Yoshihiro Fukumori. "1P567 Molecular dynamics study of dynamical structure stability of giant hemoglobin from Oligobrachia mashikoi(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S288. http://dx.doi.org/10.2142/biophys.46.s288_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Slavgorodska, Maria, i Alexander Kyrychenko. "Structure and Dynamics of Pyrene-Labeled Poly(acrylic acid): Molecular Dynamics Simulation Study". Chemistry & Chemical Technology 14, nr 1 (20.02.2020): 76–80. http://dx.doi.org/10.23939/chcht14.01.076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Davies, Matt. "Molecular dynamics". Biochemist 26, nr 4 (1.08.2004): 53–54. http://dx.doi.org/10.1042/bio02604053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bergstra, J. A., i I. Bethke. "Molecular dynamics". Journal of Logic and Algebraic Programming 51, nr 2 (czerwiec 2002): 193–214. http://dx.doi.org/10.1016/s1567-8326(02)00021-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Goodfellow, Julia M., i Mark A. Williams. "Molecular dynamics". Current Biology 2, nr 5 (maj 1992): 257–58. http://dx.doi.org/10.1016/0960-9822(92)90373-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Goodfellow, Julia M., i Mark A. Williams. "Molecular dynamics". Current Opinion in Structural Biology 2, nr 2 (kwiecień 1992): 211–16. http://dx.doi.org/10.1016/0959-440x(92)90148-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Alder, Berni J. "Slow dynamics by molecular dynamics". Physica A: Statistical Mechanics and its Applications 315, nr 1-2 (listopad 2002): 1–4. http://dx.doi.org/10.1016/s0378-4371(02)01220-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Williams, Sarah L., César Augusto F. de Oliveira i J. Andrew McCammon. "Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics". Journal of Chemical Theory and Computation 6, nr 2 (14.01.2010): 560–68. http://dx.doi.org/10.1021/ct9005294.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Righini, R. "Molecular dynamics and lattice dynamics calculations in molecular crystals". Physica B+C 131, nr 1-3 (sierpień 1985): 234–48. http://dx.doi.org/10.1016/0378-4363(85)90156-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Phares, Denis J., i Arun R. Srinivasa. "Molecular Dynamics with Molecular Temperature". Journal of Physical Chemistry A 108, nr 29 (lipiec 2004): 6100–6108. http://dx.doi.org/10.1021/jp037910y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Wagner, Geri, Eirik Flekkøy, Jens Feder i Torstein Jøssang. "Coupling molecular dynamics and continuum dynamics". Computer Physics Communications 147, nr 1-2 (sierpień 2002): 670–73. http://dx.doi.org/10.1016/s0010-4655(02)00371-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Erban, Radek. "From molecular dynamics to Brownian dynamics". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, nr 2167 (8.07.2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.

Pełny tekst źródła
Streszczenie:
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.
Style APA, Harvard, Vancouver, ISO itp.
16

Brooks, Charles L., David A. Case, Steve Plimpton, Benoît Roux, David van der Spoel i Emad Tajkhorshid. "Classical molecular dynamics". Journal of Chemical Physics 154, nr 10 (14.03.2021): 100401. http://dx.doi.org/10.1063/5.0045455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

SHINTO, Hiroyuki. "Molecular Dynamics Simulation". Journal of the Japan Society of Colour Material 86, nr 10 (2013): 380–85. http://dx.doi.org/10.4011/shikizai.86.380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hoover. "Nonequilibrium molecular dynamics". Condensed Matter Physics 8, nr 2 (2005): 247. http://dx.doi.org/10.5488/cmp.8.2.247.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Binder, Kurt, Jürgen Horbach, Walter Kob, Wolfgang Paul i Fathollah Varnik. "Molecular dynamics simulations". Journal of Physics: Condensed Matter 16, nr 5 (23.01.2004): S429—S453. http://dx.doi.org/10.1088/0953-8984/16/5/006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Ashfold, M. N. R., i D. H. Parker. "Imaging molecular dynamics". Phys. Chem. Chem. Phys. 16, nr 2 (2014): 381–82. http://dx.doi.org/10.1039/c3cp90161k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Thomas, David D. "Molecular dynamics resolved". Nature 321, nr 6069 (maj 1986): 539–40. http://dx.doi.org/10.1038/321539a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

STADLER, BÄRBEL M. R., i PETER F. STADLER. "MOLECULAR REPLICATOR DYNAMICS". Advances in Complex Systems 06, nr 01 (marzec 2003): 47–77. http://dx.doi.org/10.1142/s0219525903000724.

Pełny tekst źródła
Streszczenie:
Template-dependent replication at the molecular level is the basis of reproduction in nature. A detailed understanding of the peculiarities of the chemical reaction kinetics associated with replication processes is therefore an indispensible prerequisite for any understanding of evolution at the molecular level. Networks of interacting self-replicating species can give rise to a wealth of different dynamical phenomena, from competitive exclusion to permanent coexistence, from global stability to multi-stability and chaotic dynamics. Nevertheless, there are some general principles that govern their overall behavior. We focus on the question to what extent the dynamics of replication can explain the accumulation of genetic information that eventually leads to the emergence of the first cell and hence the origin of life as we know it. A large class of ligation-based replication systems, which includes the experimentally available model systems for template directed self-replication, is of particular interest because its dynamics bridges the gap between the survival of a single fittest species to the global coexistence of everthing. In this intermediate regime the selection is weak enough to allow the coexistence of genetically unrelated replicators and strong enough to limit the accumulation of disfunctional mutants.
Style APA, Harvard, Vancouver, ISO itp.
23

Rapaport, D. C. "Interactive molecular dynamics". Physica A: Statistical Mechanics and its Applications 240, nr 1-2 (czerwiec 1997): 246–54. http://dx.doi.org/10.1016/s0378-4371(97)00148-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Tidor, Bruce. "Molecular dynamics simulations". Current Biology 7, nr 9 (wrzesień 1997): R525—R527. http://dx.doi.org/10.1016/s0960-9822(06)00269-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Hansson, Tomas, Chris Oostenbrink i WilfredF van Gunsteren. "Molecular dynamics simulations". Current Opinion in Structural Biology 12, nr 2 (kwiecień 2002): 190–96. http://dx.doi.org/10.1016/s0959-440x(02)00308-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Matthews, G. Peter. "Molecular dynamics simulator". Journal of Chemical Education 70, nr 5 (maj 1993): 387. http://dx.doi.org/10.1021/ed070p387.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Krienke, Hartmut. "Molecular dynamics simulation". Journal of Molecular Liquids 75, nr 3 (marzec 1998): 271–72. http://dx.doi.org/10.1016/s0167-7322(97)00106-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Bandrauk, André D., Jörn Manz i M. J. J. Vrakking. "Attosecond molecular dynamics". Chemical Physics 366, nr 1-3 (grudzień 2009): 1. http://dx.doi.org/10.1016/j.chemphys.2009.10.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

DUMITRICA, T., i R. JAMES. "Objective molecular dynamics". Journal of the Mechanics and Physics of Solids 55, nr 10 (październik 2007): 2206–36. http://dx.doi.org/10.1016/j.jmps.2007.03.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Mitchell, P. J., i D. Fincham. "Multicomputer molecular dynamics". Future Generation Computer Systems 9, nr 1 (maj 1993): 5–10. http://dx.doi.org/10.1016/0167-739x(93)90020-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Casavecchia, Piergiorgio, Mark Brouard, Michel Costes, David Nesbitt, Evan Bieske i Scott Kable. "Molecular collision dynamics". Physical Chemistry Chemical Physics 13, nr 18 (2011): 8073. http://dx.doi.org/10.1039/c1cp90049h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Schroeder, Daniel V. "Interactive molecular dynamics". American Journal of Physics 83, nr 3 (marzec 2015): 210–18. http://dx.doi.org/10.1119/1.4901185.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Straatsma, T. P. "Scalable molecular dynamics". Journal of Physics: Conference Series 16 (1.01.2005): 287–99. http://dx.doi.org/10.1088/1742-6596/16/1/040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Hoffman, Mark B., i Peter V. Coveney. "Lattice Molecular Dynamics". Molecular Simulation 27, nr 3 (wrzesień 2001): 157–68. http://dx.doi.org/10.1080/08927020108023021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Rapaport, D. C. "Molecular dynamics simulation". Computing in Science & Engineering 1, nr 1 (1999): 70–71. http://dx.doi.org/10.1109/5992.743625.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

D.P. "Molecular photodissociation dynamics". Journal of Molecular Structure 213 (październik 1989): 321. http://dx.doi.org/10.1016/0022-2860(89)85133-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Feldmeier, H. "Fermionic molecular dynamics". Nuclear Physics A 515, nr 1 (sierpień 1990): 147–72. http://dx.doi.org/10.1016/0375-9474(90)90328-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ritchie, Burke. "Quantum molecular dynamics". International Journal of Quantum Chemistry 111, nr 1 (26.10.2010): 1–7. http://dx.doi.org/10.1002/qua.22371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Heermann, Dieter W., Peter Nielaba i Mauro Rovere. "Hybrid molecular dynamics". Computer Physics Communications 60, nr 3 (październik 1990): 311–18. http://dx.doi.org/10.1016/0010-4655(90)90030-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Hoover, Wm G. "Nonequilibrium molecular dynamics". Nuclear Physics A 545, nr 1-2 (sierpień 1992): 523–36. http://dx.doi.org/10.1016/0375-9474(92)90490-b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Tully, John C. "Nonadiabatic molecular dynamics". International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Schulman, Stephen J. "Molecular Photodissociation Dynamics". Journal of Pharmaceutical Sciences 78, nr 5 (maj 1989): 435. http://dx.doi.org/10.1002/jps.2600780520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Braeckmans, Kevin, Dries Vercauteren, Jo Demeester i Stefaan C. De Smedt. "Measuring Molecular Dynamics". Imaging & Microscopy 11, nr 2 (maj 2009): 26–28. http://dx.doi.org/10.1002/imic.200990033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Proctor, Elizabeth A., Feng Ding i Nikolay V. Dokholyan. "Discrete molecular dynamics". WIREs Computational Molecular Science 1, nr 1 (styczeń 2011): 80–92. http://dx.doi.org/10.1002/wcms.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

VASHISHTA, PRIYA, RAJIV K. KALIA, AIICHIRO NAKANO i JIN YU. "MOLECULAR DYNAMICS AND QUANTUM MOLECULAR DYNAMICS SIMULATIONS ON PARALLEL ARCHITECTURES". International Journal of Modern Physics C 05, nr 02 (kwiecień 1994): 281–83. http://dx.doi.org/10.1142/s0129183194000325.

Pełny tekst źródła
Streszczenie:
Efficient parallel molecular dynamics (MD) algorithm based on the multiple-time-step (MTS) approach is developed. The MTS-MD algorithm is used to study structural correlations in porous silica at densities 2.2 g/cm3 to 1.6 g/cm3. Nature of phonons and effects of hydrostatic pressure in solid C60 is studied using the tight-binding MD method within a unified interaction model which includes intermolecular and intra-molecular interactions.
Style APA, Harvard, Vancouver, ISO itp.
46

Narumi, Tetsu, Ryutaro Susukita, Toshikazu Ebisuzaki, Geoffrey McNiven i Bruce Elmegreen. "Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations". Molecular Simulation 21, nr 5-6 (styczeń 1999): 401–15. http://dx.doi.org/10.1080/08927029908022078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Wu, Jian-Bo, Shu-Jia Li, Hong Liu, Hu-Jun Qian i Zhong-Yuan Lu. "Dynamics and reaction kinetics of coarse-grained bulk vitrimers: a molecular dynamics study". Physical Chemistry Chemical Physics 21, nr 24 (2019): 13258–67. http://dx.doi.org/10.1039/c9cp01766f.

Pełny tekst źródła
Streszczenie:
We used the hybrid molecular dynamics–Monte Carlo (MD–MC) algorithm to establish a molecular dynamics model that can accurately reflect bond exchange reactions, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system.
Style APA, Harvard, Vancouver, ISO itp.
48

Anam, Muhammad Syaekhul, i S. Suwardi. "Hydration Structures and Dynamics of Ga3+ Ion Based on Molecular Mechanics Molecular Dynamics Simulation (Classical DM)". Indonesian Journal of Chemistry and Environment 4, nr 2 (10.03.2022): 49–56. http://dx.doi.org/10.21831/ijoce.v4i2.48401.

Pełny tekst źródła
Streszczenie:
The structure and hydration dynamics of Ga3+ ion have been studied using classical Molecular Dynamics (MD) simulations. The data collection procedure includes determining the best base set, constructing 2-body and 3-body potential equations, classical molecular dynamics simulations based on 2-body potentials, classical molecular dynamics simulations based on 2-body + 3 potential-body. The trajectory file data analysis was done to obtain structural properties parameters such as RDF, CND, ADF, and dynamic properties, namely the movement of H2O ligands between hydrations shells. The results of the research indicated that the hydration complex structure of Ga(H2O)83+ and Ga(H2O)63+ was observed in molecular dynamics simulations (MM-2 body) and (MM-2 body + 3-body), respectively. The movement of H2O ligands occurs between the first and second shell or vice versa in the MD simulation of MM-2 bodies but does not occur in MD simulations of (MM-2 bodies + MM-3 bodies). Therefore, the water ligands in the first hydrated shell are stable.
Style APA, Harvard, Vancouver, ISO itp.
49

Sivak, A. B., D. N. Demidov i P. A. Sivak. "DIFFUSION CHARACTERISTICS OF RADIATION DEFECTS IN IRON: MOLECULAR DYNAMICS DATA". Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, nr 2 (2021): 148–57. http://dx.doi.org/10.21517/0202-3822-2021-44-2-148-157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Inoue, Yasuhiro, Shinji Matsushita i Taiji Adachi. "BC-JP-6 Molecular dynamics simulations of an actin filament". Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _BC—JP—6–1—_BC—JP—6–1. http://dx.doi.org/10.1299/jsmemecj.2012._bc-jp-6-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii