Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Molecular Dynamics- Fluids.

Książki na temat „Molecular Dynamics- Fluids”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Molecular Dynamics- Fluids”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lee, Lloyd L. Molecular thermodynamics of nonideal fluids. Boston: Butterworths, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sadus, Richard J. Molecular simulation of fluids: Theory, algorithms, and object-orientation. Amsterdam: Elsevier, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Arce, Pedro F. Fluid phase behavior of systems involving high molecular weight compounds and supercritical fluids. Hauppauge, N.Y: Nova Science Publishers, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1941-, Lichtenthaler Ruediger N., i Azevedo, Edmundo Gomes de, 1949-, red. Molecular thermodynamics of fluid-phase equilibria. Wyd. 3. Upper Saddle River, N.J: Prentice Hall PTR, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

1941-, Lichtenthaler Ruediger N., i Azevedo, Edmundo Gomes de, 1949-, red. Molecular thermodynamics of fluid-phase equilibria. Wyd. 2. Englewood Cliffs, N.J: Prentice-Hall, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Complex dynamics of glass-forming liquids: A mode-coupling theory. New York: Oxford University Press, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Marc, Baus, Rull Luis F, Ryckaert Jean-Paul, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Study Institute on Observation, Prediction and Simulation of Phase Transitions in Complex Fluids (1994 : Varenna, Italy), red. Observation, prediction and simulation of phase transitions in complex fluids. Dordrecht: Kluwer Academic Publishers, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Collins, Michael W. Micro and Nano Flow Systems for Bioanalysis. New York, NY: Springer New York, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Greenspan, Donald. Molecular cavity flow. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Antonchenko, V. I͡A. Fizika vody. Kiev: Nauk. dumka, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Michel, Mareschal, Holian Brad Lee i North Atlantic Treaty Organization. Scientific Affairs Division., red. Microscopic simulations of complex hydrodynamic phenomena. New York: Plenum Press, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Giuseppe, Tomassetti, red. Introduction to molecular beams gas dynamics. London: Imperial College Press, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Lim, Melvin Choon Giap. Carbon Nanotubes as Nanodelivery Systems: An Insight Through Molecular Dynamics Simulations. Singapore: Springer Singapore, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows (1995 Maretea, Italy). Molecular physics and hypersonic flows: [proceedings of the NATO NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows, Maretea, Italy, May 21-June 3, 1995]. Dordrecht: Kluwer Academic in cooperation with NATO Scientific Affairs Division, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Keil, Frerich. Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

J, Tildesley D., red. Computer simulation of liquids. Oxford [England]: Clarendon Press, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

J, Tildesley D., red. Computer simulation of liquids. Oxford [England]: Clarendon Press, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Tatum, Kenneth E. Computation of thermally perfect properties of oblique shock waves. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Center, Langley Research, red. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Center, Langley Research, red. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Sadus. Molecular Simulation of Fluids. Elsevier Science, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lee, Lloyd L., i Howard Brenner. Molecular Thermodynamics of Nonideal Fluids. Elsevier Science & Technology Books, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Lucas, Klaus. Molecular Models for Fluids. University of Cambridge ESOL Examinations, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Lucas, Klaus. Molecular Models for Fluids. Cambridge University Press, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Molecular Models for Fluids. Cambridge University Press, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Eckhardt, Wolfgang, Hans-Joachim Bungartz, Alexander Heinecke i Martin Horsch. Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics. Springer London, Limited, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Eckhardt, Wolfgang, Hans-Joachim Bungartz, Alexander Heinecke i Martin Horsch. Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics. Springer, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Sadus. Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier Science & Technology Books, 2022.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bosch, Dr Alexandra ten. Analytical Molecular Dynamics Of Fluids: From Atoms To Oceans. Independently published, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Slow Dynamics in Complex Systems: 3rd International Symposium on Slow Dynamics in Complex Systems (AIP Conference Proceedings / Atomic, Molecular, Chemical Physics). American Institute of Physics, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Kremer, Friedrich. Dynamics in Geometrical Confinement. Springer London, Limited, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Dynamics in Geometrical Confinement. Springer, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Succi, Sauro. Numerical Methods for the Kinetic Theory of Fluids. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0010.

Pełny tekst źródła
Streszczenie:
This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.
Style APA, Harvard, Vancouver, ISO itp.
38

Boon, Jean Pierre, i Sidney Yip. Molecular Hydrodynamics. Dover Publications, Incorporated, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Allen, Michael P., i Dominic J. Tildesley. Nonequilibrium molecular dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0011.

Pełny tekst źródła
Streszczenie:
This chapter explains some of the fundamental issues associated with applying perturbations to a molecular dynamics simulation, along with practical details of methods for studying systems out of equilibrium. The main emphasis is on fluid flow and viscosity measurements. Spatially homogeneous perturbations are described to study shear and extensional flow. Non-equilibrium methods are applied to the study of heat flow and the calculation of the thermal conductivity. Issues of thermostatting, and the modelling of surface-fluid interactions for inhomogeneous systems, are discussed. The measurement of free energy changes through non-equilibrium work expressions such as those of Jarzynski and Crooks is also explained.
Style APA, Harvard, Vancouver, ISO itp.
40

Collins, Michael W., i Carola S. Koenig. Micro and Nano Flow Systems for Bioanalysis. Springer, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Succi, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.

Pełny tekst źródła
Streszczenie:
Dense fluids and liquids molecules are in constant interaction; hence, they do not fit into the Boltzmann’s picture of a clearcut separation between free-streaming and collisional interactions. Since the interactions are soft and do not involve large scattering angles, an effective way of describing dense fluids is to formulate stochastic models of particle motion, as pioneered by Einstein’s theory of Brownian motion and later extended by Paul Langevin. Besides its practical value for the study of the kinetic theory of dense fluids, Brownian motion bears a central place in the historical development of kinetic theory. Among others, it provided conclusive evidence in favor of the atomistic theory of matter. This chapter introduces the basic notions of stochastic dynamics and its connection with other important kinetic equations, primarily the Fokker–Planck equation, which bear a complementary role to the Boltzmann equation in the kinetic theory of dense fluids.
Style APA, Harvard, Vancouver, ISO itp.
42

Holian, Brad Lee, i Michel Mareschal. Microscopic Simulations of Complex Hydrodynamic Phenomena. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

(Editor), Michel Mareschal, i Brad Lee Holian (Editor), red. Microscopic Simulations of Complex Hydrodynamic Phenomena (NATO Science Series: B:). Springer, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Tomassetti, Giuseppe, i Giovanni Sanna. Introduction to Molecular Beam Gas Dynamics. Imperial College Press, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Webb, Andrew. Colloids in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0056.

Pełny tekst źródła
Streszczenie:
Colloid solutions are homogenous mixtures of large molecules suspended in a crystalloid solution. The efficacy of colloids as volume substitutes or expanders, and length of effect are determined by their physicochemical properties. Smaller volumes of colloid than crystalloid are required for resuscitation. The primary use of colloids is in the correction of circulating volume. Rather than using fixed haemodynamic endpoints, fluid can be given in small aliquots with assessment of the dynamic haemodynamic response to each aliquot. The aim of a fluid challenge is to produce a small, but significant (200 mL) and rapid increase in plasma volume with changes in central venous pressure or stroke volume used to judge fluid responsiveness. Colloid fluids give a reliable increase in plasma volume to judge fluid responsiveness.
Style APA, Harvard, Vancouver, ISO itp.
46

Nuclear dynamics: Molecular biology and visualization of the nucleus. Tokyo: Springer, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Cowan, Martin E. Synthesis and characterization of high molecular weight water-soluble polymers to study the role of extensional viscosity in polymeric drag reduction. 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zachrich, Gregory Allen. Experimental determination of the molecular diffusion coefficient of gases by enhanced dispersion in oscillatory flows. 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

(Editor), K. Nagata, i K. Takeyasu (Editor), red. Nuclear Dynamics. Springer, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Keil, Frerich, Wolfgang Mackens, Heinrich Voß i Joachim Werther. Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties. Springer London, Limited, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii