Gotowa bibliografia na temat „Molecular Dynamics- Fluids”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Molecular Dynamics- Fluids”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Molecular Dynamics- Fluids"
Loya, Adil, Antash Najib, Fahad Aziz, Asif Khan, Guogang Ren i Kun Luo. "Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids". Beilstein Journal of Nanotechnology 13 (7.07.2022): 620–28. http://dx.doi.org/10.3762/bjnano.13.54.
Pełny tekst źródłaToxvaerd, S. "Fragmentation of fluids by molecular dynamics". Physical Review E 58, nr 1 (1.07.1998): 704–12. http://dx.doi.org/10.1103/physreve.58.704.
Pełny tekst źródłaColonna, Piero, i Paolo Silva. "Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations". Journal of Fluids Engineering 125, nr 3 (1.05.2003): 414–27. http://dx.doi.org/10.1115/1.1567306.
Pełny tekst źródłaPerez, Felipe, i Deepak Devegowda. "A Molecular Dynamics Study of Primary Production from Shale Organic Pores". SPE Journal 25, nr 05 (22.05.2020): 2521–33. http://dx.doi.org/10.2118/201198-pa.
Pełny tekst źródłaBarski, Marek, Małgorzata Chwał i Piotr Kędziora. "Molecular Dynamics in Simulation of Magneto-Rheological Fluids Behavior". Key Engineering Materials 542 (luty 2013): 11–27. http://dx.doi.org/10.4028/www.scientific.net/kem.542.11.
Pełny tekst źródłaHawlitzky, M., J. Horbach i K. Binder. "Simulations of Glassforming Network Fluids: Classical Molecular Dynamics versus Car-Parrinello Molecular Dynamics". Physics Procedia 6 (2010): 7–11. http://dx.doi.org/10.1016/j.phpro.2010.09.021.
Pełny tekst źródłaToro-Labbé, Alejándro, Rolf Lustig i William A. Steele. "Specific heats for simple molecular fluids from molecular dynamics simulations". Molecular Physics 67, nr 6 (20.08.1989): 1385–99. http://dx.doi.org/10.1080/00268978900101881.
Pełny tekst źródłaDas, Sanjit K., Mukul M. Sharma i Robert S. Schechter. "Solvation Force in Confined Molecular Fluids Using Molecular Dynamics Simulation". Journal of Physical Chemistry 100, nr 17 (styczeń 1996): 7122–29. http://dx.doi.org/10.1021/jp952281g.
Pełny tekst źródłaNwobi, Obika C., Lyle N. Long i Michael M. Micci. "Molecular Dynamics Studies of Properties of Supercritical Fluids". Journal of Thermophysics and Heat Transfer 12, nr 3 (lipiec 1998): 322–27. http://dx.doi.org/10.2514/2.6364.
Pełny tekst źródłaKeblinski, P., J. Eggebrecht, D. Wolf i S. R. Phillpot. "Molecular dynamics study of screening in ionic fluids". Journal of Chemical Physics 113, nr 1 (lipiec 2000): 282–91. http://dx.doi.org/10.1063/1.481819.
Pełny tekst źródłaRozprawy doktorskie na temat "Molecular Dynamics- Fluids"
Grinberg, Farida. "Ultraslow molecular dynamics of organized fluids". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196884.
Pełny tekst źródłaZhang, Junfang. "Computer simulation of nanorheology for inhomogenous fluids". Australasian Digital Thesis Program, 2005. http://adt.lib.swin.edu.au/public/adt-VSWT20050620.095154.
Pełny tekst źródłaA thesis submitted in fulfilment of requirements for the degree of Doctor of Philosophy, Centre for Molecular Simulation, School of Information Technology, Swinburne University of Technology - 2005. Typescript. Bibliography: p. 164-170.
Brookes, Sarah. "Fluids in Nanopores". Thesis, Griffith University, 2016. http://hdl.handle.net/10072/365467.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Siavosh-Haghighi, Ali. "Topics in molecular dynamics". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164542.
Pełny tekst źródłaVyalov, Ivan. "Molecular dynamics simulation of dissolution of cellulose in supercritical fluids and mixtures of cosolvents/supercritical fluids". Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10178/document.
Pełny tekst źródłaCellulose is insoluble in neat supercritical CO2 and the main objective of this work was to investigate mixtures of scCO2 with polar cosolvents for the development of new processing technologies for the cellulose dissolution. The objective is achieved by studying the dissolution process of monomer of cellulose and its various polymorphs. The effect of the t/d parameters on the dissolution process was analyzed by molecular dynamics simulation. We begin with analyzing structure of pure supercritical fluids and mixtures of supercritical fluids/cosolvents using unconvential tools: Voronoi tesselations and nearest neighbours approach.Thermodynamics of the mixtures of scCO2/cosolvents is analysed in order to check the validity of the potential models used in our simulations for what the method of thermodynamic integration to calculate the energy, entropy and free energy of mixing was applied. To analyze the dissolution of cellulose we started from studying the solvation free energy of cellobiose(cellulose monomer) which was calculated from molecular dynamics simulations using free energy perturbation method. The influence of conformational degrees of freedom on solvation free energy of cellobiose was also considered.Finally, the direct dissolution of cellulose crystals models in well-known good cellulose solvent(1-ethyl-3-methylimidazolium chloride) and then considered supercritical solvents. It was found that various mixtures of CO2 with cosolvents do not dissolve cellulose but they can considerably affect its crystalline structure whereas ammonia fluid can dissolve cellulose and this process is significantly influenced by temperature, pressure and density
Grinberg, Farida. "Ultraslow molecular dynamics of organized fluids: NMR experiments and Monte-Carlo simulations". Diffusion fundamentals 2 (2005) 119, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14460.
Pełny tekst źródłaMuscatello, Jordan. "Heat transport in fluids and interfaces via non-equilibrium molecular dynamics simulations". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11081.
Pełny tekst źródłaAlekseeva, Uliana [Verfasser]. "Adaptive resolution simulations : combining multi-particle-collision dynamics and molecular dynamics simulations for fluids / Uliana Alekseeva". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/105230351X/34.
Pełny tekst źródłaBos�ko, Jaroslaw Tomasz, i jbosko@unimelb edu au. "Molecular simulation of dendrimers under shear". Swinburne University of Technology. Centre for Molecular Simulation, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20050804.141034.
Pełny tekst źródłaLiu, Qianli Zewail Ahmed H. Zewail Ahmed H. "Femtosecond real-time dynamics of solvation : molecular reactions in clusters and supercritical fluids /". Diss., Pasadena, Calif. : California Institute of Technology, 1997. http://resolver.caltech.edu/CaltechETD:etd-04072008-091702.
Pełny tekst źródłaKsiążki na temat "Molecular Dynamics- Fluids"
Lee, Lloyd L. Molecular thermodynamics of nonideal fluids. Boston: Butterworths, 1988.
Znajdź pełny tekst źródłaSadus, Richard J. Molecular simulation of fluids: Theory, algorithms, and object-orientation. Amsterdam: Elsevier, 1999.
Znajdź pełny tekst źródłaArce, Pedro F. Fluid phase behavior of systems involving high molecular weight compounds and supercritical fluids. Hauppauge, N.Y: Nova Science Publishers, 2009.
Znajdź pełny tekst źródła1941-, Lichtenthaler Ruediger N., i Azevedo, Edmundo Gomes de, 1949-, red. Molecular thermodynamics of fluid-phase equilibria. Wyd. 3. Upper Saddle River, N.J: Prentice Hall PTR, 1999.
Znajdź pełny tekst źródła1941-, Lichtenthaler Ruediger N., i Azevedo, Edmundo Gomes de, 1949-, red. Molecular thermodynamics of fluid-phase equilibria. Wyd. 2. Englewood Cliffs, N.J: Prentice-Hall, 1986.
Znajdź pełny tekst źródłaComplex dynamics of glass-forming liquids: A mode-coupling theory. New York: Oxford University Press, 2008.
Znajdź pełny tekst źródłaMarc, Baus, Rull Luis F, Ryckaert Jean-Paul, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Study Institute on Observation, Prediction and Simulation of Phase Transitions in Complex Fluids (1994 : Varenna, Italy), red. Observation, prediction and simulation of phase transitions in complex fluids. Dordrecht: Kluwer Academic Publishers, 1995.
Znajdź pełny tekst źródłaCollins, Michael W. Micro and Nano Flow Systems for Bioanalysis. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaGreenspan, Donald. Molecular cavity flow. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1998.
Znajdź pełny tekst źródłaAntonchenko, V. I͡A. Fizika vody. Kiev: Nauk. dumka, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Molecular Dynamics- Fluids"
Ladd, Anthony J. C. "Molecular Dynamics". W Computer Modelling of Fluids Polymers and Solids, 55–82. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_3.
Pełny tekst źródłaClarke, Julian H. R. "Molecular Dynamics of Chain Molecules". W Computer Modelling of Fluids Polymers and Solids, 203–17. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_8.
Pełny tekst źródłaFrenkel, D. "Simulation of Sub-molecular and Supra-molecular Fluids". W Molecular Dynamics Simulations, 111–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84713-4_10.
Pełny tekst źródłaPosch, H. A., i W. G. Hoover. "Nonequilibrium Molecular Dynamics of Classical Fluids". W Molecular Liquids: New Perspectives in Physics and Chemistry, 527–47. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2832-2_30.
Pełny tekst źródłaSprik, M. "Molecular Dynamics Techniques for Complex Molecular Systems". W Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, 421–61. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0065-6_10.
Pełny tekst źródłaHeinzinger, K. "Molecular Dynamics Simulations of Aqueous Systems". W Computer Modelling of Fluids Polymers and Solids, 357–94. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_14.
Pełny tekst źródłaRapaport, D. C. "Hardware Issues in Molecular Dynamics Algorithm Design". W Computer Modelling of Fluids Polymers and Solids, 249–67. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_10.
Pełny tekst źródłaMizan, Tahmid I., Phillip E. Savage i Robert M. Ziff. "A Molecular Dynamics Investigation of Hydrogen Bonding in Supercritical Water". W Innovations in Supercritical Fluids, 47–64. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0608.ch003.
Pełny tekst źródłaSchlamp, S., i B. C. Hathorn. "Molecular dynamics of shock waves in dense fluids". W Shock Waves, 43–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_6.
Pełny tekst źródłaBrooks, Charles L. "Molecular Simulations of Protein Structure, Dynamics and Thermodynamics". W Computer Modelling of Fluids Polymers and Solids, 289–334. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_12.
Pełny tekst źródłaStreszczenia konferencji na temat "Molecular Dynamics- Fluids"
Takagi, Shu, Gota Kikugawa i Yoichiro Matsumoto. "Molecular Dynamics Simulation of Nanobubbles". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45675.
Pełny tekst źródłaIsaiev, Mykola, Michel Gradeck i Konstantinos Termentzidis. "LEIDENFROST EFFECT, SIMULATION WITH MOLECULAR DYNAMICS". W Second Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/tfec2017.mnt.017667.
Pełny tekst źródłaSakai, Kiminori, i Takashi Tokumasu. "Molecular Dynamics Study of Oxygen Permeation Through the Ionomer of PEFC Catalyst Layer". W ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-36020.
Pełny tekst źródłaWashizu, H., S. Sanda, S. Hyodo, T. Ohmori, N. Nishino i A. Suzuki. "A Molecular Dynamics Analysis of the Traction Fluids". W SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-1016.
Pełny tekst źródłaYip, Sidney. "Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis". W Symposium in Honor of Dr Berni Alder's 90th Birthday. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813209428_0009.
Pełny tekst źródłaLi, Ji, Shan Gao, Wei Liu i Zhichun Liu. "CAPILLARY EVAPOTRATION ON NANOPOROUS MEMBRANE: A MOLECULAR DYNAMICS STUDY". W 4th Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/tfec2019.hpp.028502.
Pełny tekst źródłaDarbandi, Masoud, Hossein Reza Abbasi, Moslem Sabouri i Rasool Khaledi-Alidusti. "Simulation of Heat Transfer in Nanoscale Flow Using Molecular Dynamics". W ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31065.
Pełny tekst źródłaDoi, Kentaro, i Satoyuki Kawano. "Theoretical Development of Predicted Iteration Method for Considering Electron Dynamics in Quantum Molecular Dynamics". W ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-36033.
Pełny tekst źródłaLi, Zhong-zhen, L. Chen, Ya-Ling He i Wen-Quan Tao. "Molecular Dynamics Simulation of Methane Adsorption in Shale Matrix". W First Thermal and Fluids Engineering Summer Conference. Connecticut: Begellhouse, 2016. http://dx.doi.org/10.1615/tfesc1.mnt.013032.
Pełny tekst źródłaNwobi, Obika, Lyle Long, Michael Micci, Obika Nwobi, Lyle Long i Michael Micci. "Molecular dynamics studies of transport properties of supercritical fluids". W 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-598.
Pełny tekst źródłaRaporty organizacyjne na temat "Molecular Dynamics- Fluids"
Smolyanitsky, Alex, Andrei F. Kazakov, Thomas J. Bruno i Marcia L. Huber. Mass diffusion of organic fluids : a molecular dynamics perspective. National Institute of Standards and Technology, maj 2013. http://dx.doi.org/10.6028/nist.tn.1805.
Pełny tekst źródłaMorgen, Michael Mark. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids. Office of Scientific and Technical Information (OSTI), maj 1997. http://dx.doi.org/10.2172/501549.
Pełny tekst źródłaBowers, Geoffrey. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces. Office of Scientific and Technical Information (OSTI), kwiecień 2017. http://dx.doi.org/10.2172/1365679.
Pełny tekst źródłaR. James Kirkpatrick i Andrey G. Kalinichev. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces. Office of Scientific and Technical Information (OSTI), listopad 2008. http://dx.doi.org/10.2172/943318.
Pełny tekst źródłaWong, C. C., A. R. Lopez, M. J. Stevens i S. J. Plimpton. Molecular dynamics simulations of microscale fluid transport. Office of Scientific and Technical Information (OSTI), luty 1998. http://dx.doi.org/10.2172/574190.
Pełny tekst źródłaPaesani, Francesco, i Wei Xiong. Probing the Structure and Dynamics of Fluid Mixtures in Porous Materials Through Ultrafast Vibrational Spectro-Microscopy and Many-Body Molecular Dynamics. Office of Scientific and Technical Information (OSTI), grudzień 2022. http://dx.doi.org/10.2172/1901582.
Pełny tekst źródłaMurad, S. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. Final report, September 15, 1987--March 14, 1997. Office of Scientific and Technical Information (OSTI), maj 1997. http://dx.doi.org/10.2172/491501.
Pełny tekst źródłaMurad, S. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. [Viscosity and thermal conductivity of continuous, or polydisperse mixtures]. Office of Scientific and Technical Information (OSTI), wrzesień 1990. http://dx.doi.org/10.2172/6765028.
Pełny tekst źródła