Gotowa bibliografia na temat „Modern power systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Modern power systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Modern power systems"
Chen, Zhe. "Wind power in modern power systems". Journal of Modern Power Systems and Clean Energy 1, nr 1 (czerwiec 2013): 2–13. http://dx.doi.org/10.1007/s40565-013-0012-4.
Pełny tekst źródłaBadrzadeh, Babak. "Power conversion systems for modern ac-dc power systems". European Transactions on Electrical Power 22, nr 7 (18.08.2011): 879–906. http://dx.doi.org/10.1002/etep.611.
Pełny tekst źródłaWiszniewski, A., i T. Lobos. "Editorial: Modern electric power systems". IEE Proceedings - Generation, Transmission and Distribution 151, nr 2 (2004): 239. http://dx.doi.org/10.1049/ip-gtd:20040285.
Pełny tekst źródłaMezhman, Igor Frantsevich, i Daria Sergeevna Kovtun. "ANALYSIS OF MODERN POWER SYSTEMS". OlymPlus. Гуманитарная версия, nr 1 (2022): 72–75. http://dx.doi.org/10.46554/olymplus.2022.1(14).pp.72.
Pełny tekst źródłaSharma, Dushyant, i Sukumar Mishra. "Power system frequency stabiliser for modern power systems". IET Generation, Transmission & Distribution 12, nr 9 (15.05.2018): 1961–69. http://dx.doi.org/10.1049/iet-gtd.2017.1295.
Pełny tekst źródłaVlachogiannis, John G. "Quantum Computing in Modern Power Systems". Quantum Matter 3, nr 6 (1.12.2014): 489–94. http://dx.doi.org/10.1166/qm.2014.1151.
Pełny tekst źródłaMori, Tadashi, i Katsumi Suzuki. "Switching Duties in Modern Power Systems". IEEJ Transactions on Power and Energy 119, nr 3 (1999): 313–16. http://dx.doi.org/10.1541/ieejpes1990.119.3_313.
Pełny tekst źródłaKovalev, G. F., D. S. Krupenev i L. M. Lebedeva. "Modern problems of electric power systems reliability". Automation and Remote Control 71, nr 7 (lipiec 2010): 1436–41. http://dx.doi.org/10.1134/s0005117910070179.
Pełny tekst źródłaKularatna, Nihal. "Power Conditioning and Power Protection for Electronic Systems". Energies 16, nr 6 (13.03.2023): 2671. http://dx.doi.org/10.3390/en16062671.
Pełny tekst źródłaEgorov, Alexander, Paul Bannih, Denis Baltin, Alexander Kazantsev, Anton Trembach, Elizabeth Koksharova, Victor Kunshin, Natalia Zhavrid i Olga Vozisova. "Electric Power Systems Kit". Advanced Materials Research 1008-1009 (sierpień 2014): 1166–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1008-1009.1166.
Pełny tekst źródłaRozprawy doktorskie na temat "Modern power systems"
Rajkumar, Naganathy. "Novel algorithms for modern power systems". Thesis, City University London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390941.
Pełny tekst źródłaKryukova, N. V., Evgen Viktorovych Goncharov i I. V. Polyakov. "Modern monitoring systems of electric power lines". Thesis, NTU "KhPI", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38909.
Pełny tekst źródłaKamarudin, Syalwani. "Advanced Doherty power amplifier design for modern communication systems". Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/115269/.
Pełny tekst źródłaWang, Chun. "Methodologies and algorithms for fault locators in modern power systems". Thesis, University of the West of England, Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392859.
Pełny tekst źródłaShao, Jin. "Advanced Power Amplifiers Design for Modern Wireless Communication". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804973/.
Pełny tekst źródłaDong, Zhao Yang. "Advanced methods for small signal stability analysis and control in modern power systems". Phd thesis, School of Electrical and Information Engineering, Graduate School of Engineering, 1998. http://hdl.handle.net/2123/6416.
Pełny tekst źródłaYuan, Lin. "Design space re-engineering for power minimization in modern embedded systems". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3651.
Pełny tekst źródłaThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wang, Longfei. "High Performance Distributed On-Chip Voltage Regulation for Modern Integrated Systems". Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7590.
Pełny tekst źródłaChevalier, Samuel Chapman. "Inference, estimation, and prediction for stable operation of modern electric power systems". Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130842.
Pełny tekst źródłaCataloged from the official PDF of thesis.
Includes bibliographical references (pages 261-277).
To keep pace with social-ecological disruptions and technological progressions, electrical power systems must continually adapt. In order to address the stability-related challenges associated with these adaptations, this thesis develops a set of analytically rigorous yet practically oriented methods for ensuring the continued stability of modern power systems. By leveraging inference, estimation, and predictive modeling techniques, the proposed methods capitalize on the unprecedented amount of real time data emerging from modernizing smart grids. For each method, we provide simulated test results from IEEE benchmark systems. Newly deployed Phasor Measurement Units (PMUs) are observing the presence of detrimental low frequency forced oscillations (FOs) in transmission grid networks. To begin this thesis, we address the problem of locating the unknown sources of these FOs.
To perform source identification, we develop an equivalent circuit transformation which leverages suitably constructed transfer functions of grid elements. Since FO sources appear in this equivalent circuit as independent current injections, a Bayesian framework is applied to locate the most probable source of these injections. Subsequently, we use our equivalent circuit to perform a systematic investigation of energy-based source identification methods. We further leverage this equivalent circuit transformation by developing "plug-and-play" stability standards for microgrid networks that contain uncertain loading configurations. As converter-based technology declines in cost, microgrids are becoming an increasingly feasible option for expanding grid access. Via homotopic parameterization of the instability drivers in these tightly regulated systems, we identify a family of rotational functions which ensure that no eigenmodes can be driven unstable.
Any component which satisfies the resulting standards can be safely added to the network, thus allowing for plug-and-play operability. High-fidelity linearized models are needed to perform both FO source identification and microgrid stability certification. Furthermore, as loss of inertia and real-time observability of grid assets accelerate in tandem, real-time linearized modeling is becoming an increasingly useful tool for grid operators. Accordingly, we develop tools for performing real-time predictive modeling of low frequency power system dynamics in the presence of ambient perturbations. Using PMU data, we develop a black-box modeling procedure, known as Real-Time Vector Fitting (RTVF), that takes explicit account for initial state decay and concurrently active input signals. We then outline a proposed extension, known as stochastic-RTVF, that accounts for the corrupting effects of unobservable stochastic inputs.
The surrogate modeling utilized by vector fitting can also be applied to the steady state power flow problem. Due to an unprecedented deployment of distributed energy resources, operational uncertainty in electrical distribution networks is increasing dramatically. To address this challenge, we develop methodology for speeding up probabilistic power flow and state estimation routines in distribution networks. We do so by exploiting the inherently low-rank nature of the voltage profile in these systems. The associated algorithms dynamically generate a low-dimensional subspace which is used to construct a projection-based reduced order model (ROM) of the full nonlinear system. Future system solves using this ROM are highly efficient.
by Samuel Chapman Chevalier.
Ph. D. in Mechanical Engineering and Computation
Ph.D.inMechanicalEngineeringandComputation Massachusetts Institute of Technology, Department of Mechanical Engineering
Phung, James Hon-Hoe. "Power Modeling in Modern Server Systems: An Examination of Various Novel Approaches". Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21376.
Pełny tekst źródłaKsiążki na temat "Modern power systems"
Wang, Xi-Fan, Yonghua Song i Malcolm Irving. Modern Power Systems Analysis. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-72853-7.
Pełny tekst źródłaModern power system analysis. Boca Raton: CRC Press, 2013.
Znajdź pełny tekst źródłaModern power system analysis. New York: Wiley, 1988.
Znajdź pełny tekst źródła1936-, Wang X., i McDonald J. R. 1937-, red. Modern power system planning. London: McGraw-Hill, 1994.
Znajdź pełny tekst źródłaKumar, Jitendra, Manoj Tripathy i Premalata Jena, red. Control Applications in Modern Power Systems. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0193-5.
Pełny tekst źródłaDebs, Atif S. Modern Power Systems Control and Operation. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1073-0.
Pełny tekst źródłaSong, Yong-Hua, red. Modern Optimisation Techniques in Power Systems. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9189-8.
Pełny tekst źródłaMariani, E., i S. S. Murthy. Control of Modern Integrated Power Systems. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0993-8.
Pełny tekst źródłaDebs, A. S. Modern power systems control and operation. Boston: Kluwer Academic Publishers, 1988.
Znajdź pełny tekst źródłaKumar, Jitendra, Manoj Tripathy i Premalata Jena, red. Control Applications in Modern Power Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7788-6.
Pełny tekst źródłaCzęści książek na temat "Modern power systems"
Patrick, Dale R., Stephen W. Fardo i Brian W. Fardo. "Modern Power Systems". W Electrical Power Systems Technology, 89–124. Wyd. 4. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003207429-6.
Pełny tekst źródłaZhang, Boming, Wenchuan Wu i Chuanlin Zhao. "A MAS-Based Cluster Computing Platform for Modern EMS". W Power Systems, 101–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32683-7_4.
Pełny tekst źródłaWang, Weikang, Kaiqi Sun, Chujie Zeng, Chang Chen, Wei Qiu, Shutang You i Yilu Liu. "Information and Communication Infrastructures in Modern Wide-Area Systems". W Power Systems, 71–104. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54275-7_3.
Pełny tekst źródłaErlbacher, Tobias. "Modern MOS-Based Power Device Technologies in Integrated Circuits". W Power Systems, 75–103. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00500-3_5.
Pełny tekst źródłaDaneshvar, Mohammadreza, Somayeh Asadi i Behnam Mohammadi-Ivatloo. "Energy Trading Possibilities in the Modern Multi-Carrier Energy Networks". W Power Systems, 175–214. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64099-6_5.
Pełny tekst źródłaKhan, Asad Ali, i Omar A. Beg. "Cyber Vulnerabilities of Modern Power Systems". W Power Systems Cybersecurity, 47–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20360-2_2.
Pełny tekst źródłaRuan, Da. "Modern Approaches and Advanced Applications for Plant Surveillance and Diagnostics: An Overview". W Power Systems, 1–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04945-7_1.
Pełny tekst źródłaDaneshvar, Mohammadreza, Somayeh Asadi i Behnam Mohammadi-Ivatloo. "Mathematical Modeling and Uncertainty Management of the Modern Multi-Carrier Energy Networks". W Power Systems, 215–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64099-6_6.
Pełny tekst źródłaDebs, Atif S. "Power Flow Optimization". W Modern Power Systems Control and Operation, 153–202. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1073-0_5.
Pełny tekst źródłaBouhouras, Aggelos S., Paschalis A. Gkaidatzis i Dimitris P. Labridis. "Network Reconfiguration in Modern Power Distribution Networks". W Energy Systems, 219–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36115-0_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Modern power systems"
Chen, Z. "Power Electronics in Modern Power Systems". W 2022 9th International Conference on Power Electronics Systems and Applications (PESA). IEEE, 2022. http://dx.doi.org/10.1109/pesa55501.2022.10038350.
Pełny tekst źródłaSzablicki, M., P. Rzepka, A. Halinka i P. Sowa. "Diagnosis of challenges for power system protection – selected aspects of transformation of power systems". W 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9394979.
Pełny tekst źródłaBulatov, Yuri, Andrey Kryukov i Konstantin Suslov. "Application of Power Routers in Standalone Power Systems". W 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9395000.
Pełny tekst źródłaTavakoli, Mohamad Reza, Vahid Rasouli i Sahar Allahkaram. "A new design of double input power system stabilizers using SQP for interconnected power systems". W 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477175.
Pełny tekst źródłaKOKSAL, Aysun, Aydogan OZDEMIR i Joydeep MITRA. "A reliability-transient stability analysis of power systems for protection system conditions". W 2019 Modern Electric Power Systems (MEPS). IEEE, 2019. http://dx.doi.org/10.1109/meps46793.2019.9395040.
Pełny tekst źródłaBiczel, Piotr, Andrzej Jasinski i Jacek Lachecki. "Power Electronic Devices in Modern Power Systems". W EUROCON 2007 - The International Conference on "Computer as a Tool". IEEE, 2007. http://dx.doi.org/10.1109/eurcon.2007.4400220.
Pełny tekst źródłaRoutray, Sudhir K., Abhishek Javali, Anindita Sahoo, Laxmi Sharma, K. P. Sharmila i Aritri D. Ghosh. "IoT Assisted Power Electronics for Modern Power Systems". W 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2021. http://dx.doi.org/10.1109/icirca51532.2021.9544584.
Pełny tekst źródłaBlaabjerg, Frede, i Saeed Peyghami. "Reliability of Modern Power Electronic-based Power Systems". W 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe). IEEE, 2021. http://dx.doi.org/10.23919/epe21ecceeurope50061.2021.9570595.
Pełny tekst źródłaGubanski, Adam, Pawel Kostyla, Beata Kredenc, Zbigniew Leonowicz, Jacek Rezmer i Tomasz Sikorski. "Synchronized profiles of power quality parameters in assessment of disturbances in power systems with distributed generation". W 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477201.
Pełny tekst źródłaHalinka, A., P. Rzepka i M. Szablicki. "Agent model of multi-agent system for area power system protection". W 2015 Modern Electric Power Systems (MEPS). IEEE, 2015. http://dx.doi.org/10.1109/meps.2015.7477185.
Pełny tekst źródłaRaporty organizacyjne na temat "Modern power systems"
Gurieiev, Viktor, Yulii Kutsan, Anna Iatsyshyn, Andrii Iatsyshyn, Valeriia Kovach, Evgen Lysenko, Volodymyr Artemchuk i Oleksandr Popov. Simulating Systems for Advanced Training and Professional Development of Energy Specialists in Power Sector. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4456.
Pełny tekst źródłaStenclik, Derek, Aaron Bloom, Wesley Cole, Armando Figueroa Acevedo, Gord Stephen i Aidan Touhy. Redefining Resource Adequacy for Modern Power Systems: A Report of the Redefining Resource Adequacy Task Force. Office of Scientific and Technical Information (OSTI), styczeń 2021. http://dx.doi.org/10.2172/1961567.
Pełny tekst źródłaBuchanan, Ben. The AI Triad and What It Means for National Security Strategy. Center for Security and Emerging Technology, sierpień 2020. http://dx.doi.org/10.51593/20200021.
Pełny tekst źródłaEdenburn, M. W. Models for multimegawatt space power systems. Office of Scientific and Technical Information (OSTI), czerwiec 1990. http://dx.doi.org/10.2172/6252925.
Pełny tekst źródłaWorhach, Paul. Power Systems Financial Model User's Guide. Office of Scientific and Technical Information (OSTI), maj 2011. http://dx.doi.org/10.2172/1601965.
Pełny tekst źródłaSoummane, Salaheddine, Amro Elshurafa, Hatem Al Atawi i Frank Felder. Cross-seasonal Fuel Savings from Load Shifting in the Saudi Industrial Sector. King Abdullah Petroleum Studies and Research Center, kwiecień 2022. http://dx.doi.org/10.30573/ks--2022-dp01.
Pełny tekst źródłaOlsen i Willson. L51916 Pressure Based Parametric Emission Monitoring Systems (PEMS). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2002. http://dx.doi.org/10.55274/r0010181.
Pełny tekst źródłaBienstock, Daniel. RECONFIGURING POWER SYSTEMS TO MINIMIZE CASCADING FAILURES: MODELS AND ALGORITHMS. Office of Scientific and Technical Information (OSTI), kwiecień 2014. http://dx.doi.org/10.2172/1127329.
Pełny tekst źródłaSoummane, Salaheddine, i Frédéric Ghersi. Projecting Saudi Sectoral Electricity Demand in 2030 Using a Computable General Equilibrium Model. King Abdullah Petroleum Studies and Research Center, wrzesień 2021. http://dx.doi.org/10.30573/ks--2021-dp12.
Pełny tekst źródłaDobson, Ian, Ian Hiskens, Jeffrey Linderoth i Stephen Wright. ARRA: Reconfiguring Power Systems to Minimize Cascading Failures - Models and Algorithms. Office of Scientific and Technical Information (OSTI), grudzień 2013. http://dx.doi.org/10.2172/1110645.
Pełny tekst źródła