Gotowa bibliografia na temat „Modeling of electronic processes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Modeling of electronic processes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Modeling of electronic processes"
Ristau, Detlev, i Henrik Ehlers. "Advanced control and modeling of deposition processes". Chinese Optics Letters 11, S1 (2013): S10203. http://dx.doi.org/10.3788/col201311.s10203.
Pełny tekst źródłaBelovod, K. A. "The modeling of processes for creating electronic learning tools". Scientific and Technical Information Processing 37, nr 2 (kwiecień 2010): 137–42. http://dx.doi.org/10.3103/s0147688210020085.
Pełny tekst źródłaMadera, Alexander Georgievitch. "Modeling thermal feedback effect on thermal processes in electronic systems". Computer Research and Modeling 10, nr 4 (sierpień 2018): 483–94. http://dx.doi.org/10.20537/2076-7633-2018-10-4-483-494.
Pełny tekst źródłaMadera, A. G. "Interval-stochastic thermal processes in electronic systems: Analysis and modeling". Journal of Engineering Thermophysics 26, nr 1 (styczeń 2017): 17–28. http://dx.doi.org/10.1134/s1810232817010039.
Pełny tekst źródłaMadera, A. G. "Interval-stochastic thermal processes in electronic systems: Modeling in practice". Journal of Engineering Thermophysics 26, nr 1 (styczeń 2017): 29–38. http://dx.doi.org/10.1134/s1810232817010040.
Pełny tekst źródłaBudanov, A. V., E. A. Tatokchin, G. I. Kotov i D. S. Sayko. "Math modeling of electronic processes and deep level ionization kinetic". Proceedings of the Voronezh State University of Engineering Technologies, nr 2 (1.01.2016): 78–86. http://dx.doi.org/10.20914/2310-1202-2016-2-78-86.
Pełny tekst źródłaKuhn, W. B., Xin He i M. Mojarradi. "Modeling spiral inductors in SOS processes". IEEE Transactions on Electron Devices 51, nr 5 (maj 2004): 677–83. http://dx.doi.org/10.1109/ted.2004.826868.
Pełny tekst źródłaPetrushevskaya, A. A. "DIGITAL ELECTRONICS PRODUCTION MODELING AND PRODUCT QUALITY ASSURANCE". Issues of radio electronics, nr 1 (20.01.2019): 46–50. http://dx.doi.org/10.21778/2218-5453-2019-1-46-50.
Pełny tekst źródłaPodoliak, O. O., V. A. Ovchinnikova, S. N. Selyahov, T. G. Kormin i A. V. Korejatov. "Optimization methods of assembly processes of defibrillation equipment". Ural Radio Engineering Journal 5, nr 4 (2021): 410–31. http://dx.doi.org/10.15826/urej.2021.5.4.005.
Pełny tekst źródłaEremina, V. V., O. V. Zhilindina i E. A. Podolko. "MODELING THE ELECTRONIC CHARACTERISTICS OF ELECTRICAL CERAMICS. PART. II". Informatika i sistemy upravleniya, nr 1 (2021): 66–74. http://dx.doi.org/10.22250/isu.2021.67.66-74.
Pełny tekst źródłaRozprawy doktorskie na temat "Modeling of electronic processes"
Gagliardi, Alessio. "Theoretical modeling and simulation of electron-phonon scattering processes in molecular electronic devices". [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=98556282X.
Pełny tekst źródłaQian, Zhiguang. "Computer experiments [electronic resource] : design, modeling and integration /". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11480.
Pełny tekst źródłaGanesan, Admanathan. "Modeling of distributed layouts for dynamic period cases". Thesis, Wichita State University, 2006. http://hdl.handle.net/10057/1482.
Pełny tekst źródłaThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Industrial and Manufacturing Engineering.
Hontz, Eric Richard. "Electronic processes in organic optoelectronics : insights gained through modeling and magnetic field effects". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98794.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 185-232).
Organic photovoltaics (OPVs) and organic light-emitting diodes (LEDs) are organic optoelectronics offering a number of unique benefits that may play an important role in the future of clean energy generation and efficient energy consumption. In this thesis, we explore key electronic processes in OPVs and OLEDs, with a major focus on quantum-mechanical kinetic modeling of magnetic field effects (MFEs) that probe underlying subprocesses. Certain organics are capable of dividing excited states in a process termed singlet fission, which can increase the maximum theoretical efficiency of an OPV by a factor of nearly 1/3. The MFEs on photocurrent measurements from our collaborators are combined with theoretical models to determine optimal device architectures for singlet fission OPVs, allowing us to exceed the conventional limit of one electron per photon. We also use MFEs to determine the spin of charge transfer states most efficient at generating photocurrent and demonstrate microscopic insight into the mechanism of their diffusion, offering new design principles for the engineering of donor-acceptor interfaces in OPVs. Thermally activated delayed fluorescence (TADF) is becoming an increasingly important OLED technology that extracts light from non-emissive triplet states via reverse intersystem crossing (RISC) to the bright singlet state. We use MFEs to prove a rather surprising finding that in TADF materials composed of donor-acceptor bends, the electron-hole distance fluctuates as a function of time, resulting in spontaneous cycling between states that are advantageous to fluorescence at one moment and then advantageous to RISC at another. Combined with additional topics in the fields of metal organic frameworks and reaction pathfinding methods, the work in this thesis provides insight into how to achieve optimal performance in OPV and OLED devices, which may serve an important role in the future of our energy landscape.
by Eric Richard Hontz.
Ph. D. in Physical Chemistry
Cho, Hyun Cheol. "Dynamic Bayesian networks for online stochastic modeling". abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3221394.
Pełny tekst źródłaTóth, G. (Géza). "Computer modeling supported fabrication processes for electronics applications". Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514284717.
Pełny tekst źródłaShantaram, Sandeep Lall Pradeep. "Explicit finite element modeling in conjunction with digital image correlation based life prediction of lead-free electronics under shock-impact". Auburn, Ala, 2009. http://hdl.handle.net/10415/1894.
Pełny tekst źródłaEgorova, Dassia. "Modeling of ultrafast electron transfer processes multi-level Redfield theory and beyond /". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967134420.
Pełny tekst źródłaWang, Hong. "Numerical modelling of the tilt casting processes of titanium alumindes". Thesis, University of Greenwich, 2008. http://gala.gre.ac.uk/6336/.
Pełny tekst źródłaHwang, Jung Yoon. "Spatial stochastic processes for yield and reliability management with applications to nano electronics". Texas A&M University, 2004. http://hdl.handle.net/1969.1/1500.
Pełny tekst źródłaKsiążki na temat "Modeling of electronic processes"
Tennyson, Roderick C., i Arnold E. Kiv, red. Computer Modelling of Electronic and Atomic Processes in Solids. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2.
Pełny tekst źródła1937-, Tennyson Roderick C., Kiv Arnold E, North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Research Workshop on Computer Modelling of Electronic and Atomic Processes in Solids (1996 : Wrocław, Poland), red. Computer modelling of electronic and atomic processes in solids. Dordrecht: Kluwer Academic, 1997.
Znajdź pełny tekst źródłaDimpsey, Robert Tod. Performance evaluation and modeling techniques for parallel processors. Urbana, Ill: Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign, 1992.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Performance evaluation and modeling techniques for parallel processors. Urbana, Ill: Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign, 1992.
Znajdź pełny tekst źródłaZhao, Yaoyao (Fiona). Information Modeling for Interoperable Dimensional Metrology. London: Springer-Verlag London Limited, 2011.
Znajdź pełny tekst źródłaKhalid, Al-Begain, Heindl Armin i Telek Miklós, red. Analytical and stochastic modeling techniques and applications: 15th international conference, ASMTA 2008, Nicosia, Cyprus, June 4-6, 2008 : proceedings. Berlin: Springer, 2008.
Znajdź pełny tekst źródłaInternational, Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits (5th 1994 Honolulu Hawaii). International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V : Hilton Hawaiian Village, Honolulu, HI June 5-6, 1994. New York: Institute of Electrical and Electronics Engineers, 1994.
Znajdź pełny tekst źródłaDavid, Hutchison. Analytical and Stochastic Modeling Techniques and Applications: 16th International Conference, ASMTA 2009, Madrid, Spain, June 9-12, 2009. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Znajdź pełny tekst źródłaTrindle, Carl. Electronic Structure Modeling. London: Taylor and Francis, 2008.
Znajdź pełny tekst źródłaIguchi, Manabu, i Olusegun J. Ilegbusi. Modeling Multiphase Materials Processes. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7479-2.
Pełny tekst źródłaCzęści książek na temat "Modeling of electronic processes"
Schürmann, Bernd. "Modeling Design Data and Design Processes in the PLAYOUT CAD Framework". W Current Issues in Electronic Modeling, 161–89. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1347-2_5.
Pełny tekst źródłaAlexandrova, Anastassia N. "Quantum Mechanical Insights into Biological Processes at the Electronic Level". W Computational Modeling of Biological Systems, 117–64. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2146-7_6.
Pełny tekst źródłaShiktorov, P., V. Gružinskis, E. Starikov, L. Reggiani i L. Varani. "Hydrodynamic Modeling of Electronic Noise by the Transfer Impedance Method". W Simulation of Semiconductor Devices and Processes, 314–17. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-6619-2_76.
Pełny tekst źródłaCrosta, Stefano, Jean-Christophe Pazzaglia i Hendrik Schöttle. "Modelling and Securing European Justice Workflows". W ISSE 2005 — Securing Electronic Business Processes, 412–21. Wiesbaden: Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-85237-3_43.
Pełny tekst źródłaParilis, E. "Modeling Non-Metal Surface Damage Created by Multiply-Charged Ions". W Computer Modelling of Electronic and Atomic Processes in Solids, 107–13. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2_11.
Pełny tekst źródłaLukatsky, D. B., i E. Rysiakiewicz-Pasek. "Modeling of Inhomogeneity in Solid Coatings Obtained from Water Suspensions". W Computer Modelling of Electronic and Atomic Processes in Solids, 69–77. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2_7.
Pełny tekst źródłaChan, K. W., M. J. Teague, N. J. Schofield i J. I. Vette. "Modeling of Electron Time Variations in the Radiation Belts". W Quantitative Modeling of Magnetospheric Processes, 121–49. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0121.
Pełny tekst źródłaKakarountas, Athanasios, i Vasileios Chioktour. "Degradation of Reliability of Digital Electronic Equipment Over Time and Redundant Hardware-based Solutions". W Statistical Modeling of Reliability Structures and Industrial Processes, 217–28. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003203124-13.
Pełny tekst źródłaHigbie, P. R., D. N. Baker, E. W. Hones i R. D. Belian. "Pitch Angle Distributions of >30 Kev Electrons at Geostationary Altitudes". W Quantitative Modeling of Magnetospheric Processes, 203–19. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0203.
Pełny tekst źródłaFeldmann, K., i O. Meedt. "Recycling and Disassembly of Electronic Devices". W Life-Cycle Modelling for Innovative Products and Processes, 233–45. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34981-7_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Modeling of electronic processes"
Zhuravleva, I. "RADIATION EFFECTS IN INTEGRATED CHIPS WHEN EXPOSED TO IONIZING RADIATION". W Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_214-218.
Pełny tekst źródłaKADOCHNIKOV, I. N., i I. V. ARSENTIEV. "MODELING OF VIBRATION-ELECTRONIC-CHEMISTRY COUPLING IN NONEQUILIBRIUM AIR PLASMA UNDER SHOCK CONDITIONS". W NONEQUILIBRIUM PROCESSES. TORUS PRESS, 2018. http://dx.doi.org/10.30826/nepcap2018-1-02.
Pełny tekst źródłaKuc'ko, Pavel, V. Zolnikov, Svetlana Evdokimova, O. Oksyuta i Aleksey Platonov. "CURRENT STATE OF THE SPACE ELEMENT BASE". W Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_264-269.
Pełny tekst źródłaMerzlov, V. S., A. Ch Khatagov i I. V. Kryzhanovskaya. "Modeling Electronic Processes in the Monotron Gap". W 2018 International Russian Automation Conference (RusAutoCon). IEEE, 2018. http://dx.doi.org/10.1109/rusautocon.2018.8501751.
Pełny tekst źródłaElmanov, Abbos, Sirojiddin Kengboyev, Nazirjon Safarov i Adham Norkobilov. "Modeling of Laser-Assisted Cutting of Thin-Walled Steel Gears". W International Electronic Conference on Processes, 146. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105146.
Pełny tekst źródłaHa, Kim Thanh Vy, Tuan-Anh Nguyen, Quoc-Lan Nguyen, Van-Vinh Dang, Van-Han Dang, Hoang-Luan Van i Le-Na T. Pham. "Two-Phase Stefan Problem for the Modeling of Urea Prilling Tower". W International Electronic Conference on Processes. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/ecp2023-14745.
Pełny tekst źródłaMescheryakov, Sergey, Artem Groshev i Tatyana Skvortsova. "ANALYSIS OF EXISTING METHODS FOR MODELING THE IMPACT OF SPACE RADIATION ON THE ELECTRONIC COMPONENT BASE". W Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_270-275.
Pełny tekst źródłaProvatas, Vasileios, Stavros Dapontis, Michalis Konsolakis i Dimitris Ipsakis. "Modeling and Control of Hydrogen Production Systems through Water Electrolysis and Res Power". W International Electronic Conference on Processes, 51. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105051.
Pełny tekst źródłaOlguín-Rojas, José Arturo, Paulina Aguirre-Lara, Maria Mariana González Urrieta, José Miguel Téllez Zepeda, Fernando Cansino Jacome i Guadalupe del Carmen Rodriguez-Jimenes. "Modeling of the Fluidized Bed Drying Process of Pirul (Schinus molle L.) Leaves". W International Electronic Conference on Processes, 64. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105064.
Pełny tekst źródłaEvdokimova, Svetlana, D. Bubenin i R. Lopatin. "ANALYSIS OF THE CAPABILITIES OF MODERN MEDICAL INFORMATION SYSTEMS". W Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_31-37.
Pełny tekst źródłaRaporty organizacyjne na temat "Modeling of electronic processes"
Chubenko, Oksana. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications. Office of Scientific and Technical Information (OSTI), styczeń 2019. http://dx.doi.org/10.2172/1575060.
Pełny tekst źródłaNewton, M. D., S. W. Feldberg i J. F. Smalley. Theory and computational modeling: Medium reorganization and donor/acceptor coupling in electron transfer processes. Office of Scientific and Technical Information (OSTI), marzec 1998. http://dx.doi.org/10.2172/653946.
Pełny tekst źródłaModlo, Yevhenii O., Serhiy O. Semerikov, Stanislav L. Bondarevskyi, Stanislav T. Tolmachev, Oksana M. Markova i Pavlo P. Nechypurenko. Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], luty 2020. http://dx.doi.org/10.31812/123456789/3677.
Pełny tekst źródłaTichomirova, T. M., i A. G. Sukiasyan. Electronic textbook «Econometric Modeling». Ailamazyan Program Systems Institute of Russian Academy of Sciences, maj 2024. http://dx.doi.org/10.12731/ofernio.2024.25333.
Pełny tekst źródłaSarma, Sankar D. Ultrafast Electronic Processes in Semiconductor Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, luty 2000. http://dx.doi.org/10.21236/ada384374.
Pełny tekst źródłaBuckmaster, John. Modeling of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2002. http://dx.doi.org/10.21236/ada408985.
Pełny tekst źródłaRatcliff, Roger. Modeling Perceptual Decision Processes. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2014. http://dx.doi.org/10.21236/ada609771.
Pełny tekst źródłaBuchmaster. Modeling of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, maj 1999. http://dx.doi.org/10.21236/ada384825.
Pełny tekst źródłaMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1988. http://dx.doi.org/10.21236/ada204408.
Pełny tekst źródłaMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1987. http://dx.doi.org/10.21236/ada205551.
Pełny tekst źródła