Spis treści
Gotowa bibliografia na temat „Model-agnostic Explainability”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Model-agnostic Explainability”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Model-agnostic Explainability"
Diprose, William K., Nicholas Buist, Ning Hua, Quentin Thurier, George Shand, and Reece Robinson. "Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator." Journal of the American Medical Informatics Association 27, no. 4 (2020): 592–600. http://dx.doi.org/10.1093/jamia/ocz229.
Pełny tekst źródłaZafar, Muhammad Rehman, and Naimul Khan. "Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability." Machine Learning and Knowledge Extraction 3, no. 3 (2021): 525–41. http://dx.doi.org/10.3390/make3030027.
Pełny tekst źródłaTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example." Journal of Medicine and Palliative Care 4, no. 2 (2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Pełny tekst źródłaUllah, Ihsan, Andre Rios, Vaibhav Gala, and Susan Mckeever. "Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation." Applied Sciences 12, no. 1 (2021): 136. http://dx.doi.org/10.3390/app12010136.
Pełny tekst źródłaSrinivasu, Parvathaneni Naga, N. Sandhya, Rutvij H. Jhaveri, and Roshani Raut. "From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies." Mobile Information Systems 2022 (June 13, 2022): 1–20. http://dx.doi.org/10.1155/2022/8167821.
Pełny tekst źródłaLv, Ge, Chen Jason Zhang, and Lei Chen. "HENCE-X: Toward Heterogeneity-Agnostic Multi-Level Explainability for Deep Graph Networks." Proceedings of the VLDB Endowment 16, no. 11 (2023): 2990–3003. http://dx.doi.org/10.14778/3611479.3611503.
Pełny tekst źródłaFauvel, Kevin, Tao Lin, Véronique Masson, Élisa Fromont, and Alexandre Termier. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification." Mathematics 9, no. 23 (2021): 3137. http://dx.doi.org/10.3390/math9233137.
Pełny tekst źródłaHassan, Fayaz, Jianguo Yu, Zafi Sherhan Syed, Nadeem Ahmed, Mana Saleh Al Reshan, and Asadullah Shaikh. "Achieving model explainability for intrusion detection in VANETs with LIME." PeerJ Computer Science 9 (June 22, 2023): e1440. http://dx.doi.org/10.7717/peerj-cs.1440.
Pełny tekst źródłaVieira, Carla Piazzon Ramos, and Luciano Antonio Digiampietri. "A study about Explainable Articial Intelligence: using decision tree to explain SVM." Revista Brasileira de Computação Aplicada 12, no. 1 (2020): 113–21. http://dx.doi.org/10.5335/rbca.v12i1.10247.
Pełny tekst źródłaNguyen, Hung Viet, and Haewon Byeon. "Prediction of Out-of-Hospital Cardiac Arrest Survival Outcomes Using a Hybrid Agnostic Explanation TabNet Model." Mathematics 11, no. 9 (2023): 2030. http://dx.doi.org/10.3390/math11092030.
Pełny tekst źródła