Gotowa bibliografia na temat „Mobility prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mobility prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mobility prediction"
Burbey, Ingrid, i Thomas L. Martin. "A survey on predicting personal mobility". International Journal of Pervasive Computing and Communications 8, nr 1 (30.03.2012): 5–22. http://dx.doi.org/10.1108/17427371211221063.
Pełny tekst źródłaErfani, Abdolmajid, i Vanessa Frias-Martinez. "A fairness assessment of mobility-based COVID-19 case prediction models". PLOS ONE 18, nr 10 (18.10.2023): e0292090. http://dx.doi.org/10.1371/journal.pone.0292090.
Pełny tekst źródłaSánchez-Rada, J. Fernando, Raquel Vila-Rodríguez, Jesús Montes i Pedro J. Zufiria. "Predicting the Aggregate Mobility of a Vehicle Fleet within a City Graph". Algorithms 17, nr 4 (19.04.2024): 166. http://dx.doi.org/10.3390/a17040166.
Pełny tekst źródłaGuo, Bao, Hu Yang, Fan Zhang i Pu Wang. "A Hierarchical Passenger Mobility Prediction Model Applicable to Large Crowding Events". Journal of Advanced Transportation 2022 (1.06.2022): 1–12. http://dx.doi.org/10.1155/2022/7096153.
Pełny tekst źródłaYu, Zhiyong, Zhiwen Yu i Yuzhong Chen. "Multi-hop Mobility Prediction". Mobile Networks and Applications 21, nr 2 (19.12.2015): 367–74. http://dx.doi.org/10.1007/s11036-015-0668-2.
Pełny tekst źródłaCadger, Fraser, Kevin Curran, Jose Santos i Sandra Moffet. "Opportunistic Neighbour Prediction Using an Artificial Neural Network". International Journal of Advanced Pervasive and Ubiquitous Computing 7, nr 2 (kwiecień 2015): 38–50. http://dx.doi.org/10.4018/ijapuc.2015040104.
Pełny tekst źródłaGuo, Bao, Kaipeng Wang, Hu Yang, Fan Zhang i Pu Wang. "A New Individual Mobility Prediction Model Applicable to Both Ordinary Conditions and Large Crowding Events". Journal of Advanced Transportation 2023 (27.06.2023): 1–14. http://dx.doi.org/10.1155/2023/3463330.
Pełny tekst źródłaDurachman, Yusuf. "Analysis of Learning Techniques for Performance Prediction in Mobile Adhoc Networks". International Innovative Research Journal of Engineering and Technology 6, nr 2 (30.12.2020): IS—46—IS—53. http://dx.doi.org/10.32595/iirjet.org/v6i2.2020.141.
Pełny tekst źródłaYan, Xiao-Yong, Chen Zhao, Ying Fan, Zengru Di i Wen-Xu Wang. "Universal predictability of mobility patterns in cities". Journal of The Royal Society Interface 11, nr 100 (6.11.2014): 20140834. http://dx.doi.org/10.1098/rsif.2014.0834.
Pełny tekst źródłaBahra, Nasrin, i Samuel Pierre. "A Hybrid User Mobility Prediction Approach for Handover Management in Mobile Networks". Telecom 2, nr 2 (6.05.2021): 199–212. http://dx.doi.org/10.3390/telecom2020013.
Pełny tekst źródłaRozprawy doktorskie na temat "Mobility prediction"
Dong, Fang. "Moving Object Trajectory Based Spatio-Temporal Mobility Prediction". Thesis, KTH, Geodesi och geoinformatik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99033.
Pełny tekst źródłaBergh, Andre E. "Prediction assisted fast handovers for seamless IP mobility". Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/5248.
Pełny tekst źródłaIncludes bibliographical references (leaves 94-98).
This research investigates the techniques used to improve the standard Mobile IP handover process and provide proactivity in network mobility management. Numerous fast handover proposals in the literature have recently adopted a cross-layer approach to enhance movement detection functionality and make terminal mobility more seamless. Such fast handover protocols are dependent on an anticipated link-layer trigger or pre-trigger to perform pre-handover service establishment operations. This research identifies the practical difficulties involved in implementing this type of trigger and proposes an alternative solution that integrates the concept of mobility prediction into a reactive fast handover scheme.
Venkatachalaiah, Suresh, i suresh@catt rmit edu au. "Mobility prediction and Multicasting in Wireless Networks: Performance and Analysis". RMIT University. Electrical and Computer Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070301.130037.
Pełny tekst źródłaBaumann, Paul. "Human Mobility and Application Usage Prediction Algorithms for Mobile Devices". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-212427.
Pełny tekst źródłaChen, Guangshuo. "Human Habits Investigation : from Mobility Reconstruction to Mobile Traffic Prediction". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX026/document.
Pełny tekst źródłaThe understanding of human behaviors is a central question in multi-disciplinary research and has contributed to a wide range of applications. The ability to foresee human activities has essential implications in many aspects of cellular networks. In particular, the high availability of mobility prediction can enable various application scenarios such as location-based recommendation, home automation, and location-related data dissemination; the better understanding of mobile data traffic demand can help to improve the design of solutions for network load balancing, aiming at improving the quality of Internet-based mobile services. Although a large and growing body of literature has investigated the topic of predicting human mobility, there has been little discussion in anticipating mobile data traffic in cellular networks, especially in spatiotemporal view of individuals.For understanding human mobility, mobile phone datasets, consisting of Charging Data Records (CDRs), are a practical choice of human footprints because of the large-scale user populations and the vast diversity of individual movement patterns. The accuracy of mobility information granted by CDR depends on the network infrastructure and the frequency of user communication events. As cellular network deployment is highly irregular and interaction frequencies are typically low, CDR data is often characterized by spatial and temporal sparsity, which, in turn, can bias mobility analyses based on such data and cause the loss of whereabouts in individual trajectories.In this thesis, we present novel solutions of the reconstruction of individual trajectories and the prediction of individual mobile data traffic. Our contributions address the problems of (1) overcoming the incompleteness of mobility information for the use of mobile phone datasets and (2) predicting future mobile data traffic demand for the support of network management applications.First, we focus on the flaw of mobility information in mobile phone datasets. We report on an in-depth analysis of its effect on the measurement of individual mobility features and the completeness of individual trajectories. In particular, (1) we provide a confirmation of previous findings regarding the biases in mobility measurements caused by the temporal sparsity of CDR; (2) we evaluate the geographical shift caused by the mapping of user locations to cell towers and reveal the bias caused by the spatial sparsity of CDR; (3) we provide an empirical estimation of the data completeness of individual CDR-based trajectories. (4) we propose novel solutions of CDR completion to reconstruct incomplete. Our solutions leverage the nature of repetitive human movement patterns and the state-of-the-art data inference techniques and outperform previous approaches shown by data-driven simulations.Second, we address the prediction of mobile data traffic demands generated by individual mobile network subscribers. Building on trajectories completed by our developed solutions and data consumption histories extracted from a large-scale mobile phone dataset, (1) we investigate the limits of predictability by measuring the maximum predictability that any algorithm has potential to achieve and (2) we propose practical mobile data traffic prediction approaches that utilize the findings of the theoretical predictability analysis. Our theoretical analysis shows that it is theoretically possible to anticipate the individual demand with a typical accuracy of 75% despite the heterogeneity of users and with an improved accuracy of 80% using joint prediction with mobility information. Our practical based on machine learning techniques can achieve a typical accuracy of 65% and have a 1%~5% degree of improvement by considering individual whereabouts.In summary, the contributions mentioned above provide a step further towards supporting the use of mobile phone datasets and the management of network operators and their subscribers
Aljeri, Noura. "Efficient AI and Prediction Techniques for Smart 5G-enabled Vehicular Networks". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41497.
Pełny tekst źródłaPamuluri, Harihara Reddy. "Predicting User Mobility using Deep Learning Methods". Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19340.
Pełny tekst źródłaBaumann, Paul [Verfasser]. "Human Mobility and Application Usage Prediction Algorithms for Mobile Devices / Paul Baumann". München : Verlag Dr. Hut, 2016. http://d-nb.info/1120763134/34.
Pełny tekst źródłaSenatore, Carmine. "Prediction of mobility, handling, and tractive efficiency of wheeled off-road vehicles". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/37781.
Pełny tekst źródłaPh. D.
Lui, Sin Ting Angela. "Enhancing stochastic mobility prediction models for robust planetary navigation on unstructured terrain". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12904.
Pełny tekst źródłaKsiążki na temat "Mobility prediction"
Davis, Andy. Predicting arsenic mobility as part of the Anaconda Sewage Treatment Lagoon Waterfowl Project. Place of publication not identified]: Camp Dresser & McKee, 1986.
Znajdź pełny tekst źródłaZhang, Haoran. Handbook of Mobility Data Mining, Volume 2: Mobility Analytics and Prediction. Elsevier, 2023.
Znajdź pełny tekst źródłaZhang, Haoran. Handbook of Mobility Data Mining, Volume 2: Mobility Analytics and Prediction. Elsevier, 2023.
Znajdź pełny tekst źródłaMorita, Hodaka. US–Japanese Differences in Employment Practices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198812555.003.0009.
Pełny tekst źródłaSIMVEC – Simulation und Erprobung in der Fahrzeugentwicklung. VDI Verlag, 2018. http://dx.doi.org/10.51202/9783181023334.
Pełny tekst źródłaInnovative Antriebe 2018. VDI Verlag, 2018. http://dx.doi.org/10.51202/9783181023341.
Pełny tekst źródłaNielsen, François. Genes and Status Achievement. Redaktor Rosemary L. Hopcroft. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190299323.013.22.
Pełny tekst źródłaTrussell, Jessica W., i M. Christina Rivera. Word Identification and Adolescent Deaf and Hard-of-Hearing Readers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190880545.003.0011.
Pełny tekst źródłaChhibber, Pradeep K., i Rahul Verma. The Myth of Vote Buying in India. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190623876.003.0006.
Pełny tekst źródłaAslanidis, Paris. Populism and Social Movements. Redaktorzy Cristóbal Rovira Kaltwasser, Paul Taggart, Paulina Ochoa Espejo i Pierre Ostiguy. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198803560.013.23.
Pełny tekst źródłaCzęści książek na temat "Mobility prediction"
Kim, Hyong S., i Wee-Seng Soh. "Mobility Prediction for QoS Provisioning". W Mobile and Wireless Internet, 77–108. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0225-8_4.
Pełny tekst źródłaBerradi, Zahra, Mohamed Lazaar, Oussama Mahboub, Hicham Omara i Halim Berradi. "Stock Market Prediction Based on Advanced LSTM Models". W Smart Mobility and Industrial Technologies, 163–70. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46849-0_18.
Pełny tekst źródłaGeorgiou, Harris, Petros Petrou, Panagiotis Tampakis, Stylianos Sideridis, Eva Chondrodima, Nikos Pelekis i Yannis Theodoridis. "Future Location and Trajectory Prediction". W Big Data Analytics for Time-Critical Mobility Forecasting, 215–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45164-6_8.
Pełny tekst źródłaNaretto, Francesca, Roberto Pellungrini, Salvatore Rinzivillo i Daniele Fadda. "EXPHLOT: EXplainable Privacy Assessment for Human LOcation Trajectories". W Discovery Science, 325–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45275-8_22.
Pełny tekst źródłaSamaan, Nancy, i Ahmed Karmouch. "An Evidence-Based Mobility Prediction Agent Architecture". W Lecture Notes in Computer Science, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39646-8_22.
Pełny tekst źródłaChen, Haoyuan, Yali Fan, Jing Jiang i Xiang Chen. "Mobility Prediction Based on POI-Clustered Data". W Machine Learning and Intelligent Communications, 60–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00557-3_7.
Pełny tekst źródłaPersi, Stefano, Burcu Kolbay, Emilio Flores i Irene Chausse. "Prediction, One of the Key Points in the Development of Electric Vehicles". W Lecture Notes in Mobility, 223–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65871-7_17.
Pełny tekst źródłaHeckmann, Kevin, Lena Elisa Schneegans i Robert Hoyer. "Stage Prediction of Traffic Lights Using Machine Learning". W Towards the New Normal in Mobility, 635–53. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-39438-7_36.
Pełny tekst źródłaJung, Jae-il, Jaeyeol Kim i Younggap You. "Mobility Prediction Handover Using User Mobility Pattern and Guard Channel Assignment Scheme". W Universal Multiservice Networks, 155–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30197-4_16.
Pełny tekst źródłaBarhdadi, Mohamed, Badreddine Benyacoub, Abdelilah Sabri i Mohamed Ouzineb. "Churn Prediction in Telecom Using VNS Algorithm with Bootstrap Resampling Technique". W Smart Mobility and Industrial Technologies, 65–71. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46849-0_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Mobility prediction"
Liu, Yuan, Xiaonan Chen, Zhou Lin, Yi-shou Wang, Qifeng Zhou i Xinlin Qing. "Aeroengine Gas Path Parameter Trend Prediction Based on LSTM". W SAE 2023 Intelligent Urban Air Mobility Symposium. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-7087.
Pełny tekst źródłaSuzuki, Masahiro, Shomu Furuta i Yusuke Fukazawa. "Personalized human mobility prediction for HuMob challenge". W HuMob-Challenge '23: 1st International Workshop on the Human Mobility Prediction Challenge. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3615894.3628501.
Pełny tekst źródłaWu, Xigang, Duanfeng Chu, Zejian Deng, Guipeng Xin, Hongxiang Liu i Liping Lu. "Vehicle Trajectory Prediction in Highway Merging Area Using Interactive Graph Attention Mechanism". W SAE 2023 Intelligent Urban Air Mobility Symposium. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-7110.
Pełny tekst źródłaFan, Zhaoya, Jichao Chen, Tao Zhang, Ning Shi i Wei Zhang. "Machine Learning for Formation Tightness Prediction and Mobility Prediction". W SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206208-ms.
Pełny tekst źródłaKhan, Saeed, Ash Rahimi i Neil Bergmann. "Urban Mobility Prediction Using Twitter". W 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2020. http://dx.doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00082.
Pełny tekst źródłaSun, Michael H., i Douglas M. Blough. "Mobility prediction using future knowledge". W the 10th ACM Symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1298126.1298167.
Pełny tekst źródłaLiu, Lu, Junyao Guo, Sihai Zhang i Jinkang Zhu. "Similar User Assisted Mobility Prediction". W 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2019. http://dx.doi.org/10.1109/wcsp.2019.8928002.
Pełny tekst źródłaDang, Minling, Zhiwen Yu, Liming Chen, Zhu Wang, Bin Guo i Chris Nugent. "Human Mobility: Prediction and Predictability". W 2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). IEEE, 2024. http://dx.doi.org/10.1109/percomworkshops59983.2024.10502436.
Pełny tekst źródłaTerashima, Haru, Naoki Tamura, Kazuyuki Shoji, Shin Katayama, Kenta Urano, Takuro Yonezawa i Nobuo Kawaguchi. "Human Mobility Prediction Challenge: Next Location Prediction using Spatiotemporal BERT". W HuMob-Challenge '23: 1st International Workshop on the Human Mobility Prediction Challenge. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3615894.3628498.
Pełny tekst źródłaAmirrudin, Nurul Ain, Sharifah H. S. Ariffin, N. N. N. Abd Malik i N. Effiyana Ghazali. "User's mobility history-based mobility prediction in LTE femtocells network". W 2013 IEEE International RF and Microwave Conference (RFM). IEEE, 2013. http://dx.doi.org/10.1109/rfm.2013.6757228.
Pełny tekst źródłaRaporty organizacyjne na temat "Mobility prediction"
Kumar, Kaushal, i Yupeng Wei. Attention-Based Data Analytic Models for Traffic Flow Predictions. Mineta Transportation Institute, marzec 2023. http://dx.doi.org/10.31979/mti.2023.2211.
Pełny tekst źródłaBradley, Thomas. Research Performance Final Report: Mobility and Energy Improvements Realized through Prediction-based Vehicle Powertrain Control and Traffic Management. Office of Scientific and Technical Information (OSTI), maj 2022. http://dx.doi.org/10.2172/1868335.
Pełny tekst źródłaYang, Yu, i Hen-Geul Yeh. Electrical Vehicle Charging Infrastructure Design and Operations. Mineta Transportation Institute, lipiec 2023. http://dx.doi.org/10.31979/mti.2023.2240.
Pełny tekst źródłaAudoly, Richard, Rory McGee, Sergio Ocampo i Gonzalo Paz-Pardo. The Life-Cycle Dynamics of Wealth Mobility. Federal Reserve Bank of New York, kwiecień 2024. http://dx.doi.org/10.59576/sr.1097.
Pełny tekst źródłaEylander, John, Michael Lewis, Maria Stevens, John Green i Joshua Fairley. An investigation of the feasibility of assimilating COSMOS soil moisture into GeoWATCH. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/41966.
Pełny tekst źródłaPolicy Support Activity, Myanmar Agriculture. Is poverty in Myanmar on the rise? Poverty predictions from Google mobility data. Washington, DC: International Food Policy Research Institute, 2021. http://dx.doi.org/10.2499/p15738coll2.134385.
Pełny tekst źródłaAlbrecht, Jochen, Andreas Petutschnig, Laxmi Ramasubramanian, Bernd Resch i Aleisha Wright. Comparing Twitter and LODES Data for Detecting Commuter Mobility Patterns. Mineta Transportation Institute, maj 2021. http://dx.doi.org/10.31979/mti.2021.2037.
Pełny tekst źródłaTarko, Andrew P., Raul Pineda-Mendez i Qiming Guo. Predicting the Impact of Changing Speed Limits on Traffic Safety and Mobility on Indiana Freeways. Purdue University, grudzień 2019. http://dx.doi.org/10.5703/1288284316922.
Pełny tekst źródłaWong, J. Y., C. Senatore, P. Jayakumar i K. Iagnemma. Predicting Mobility Performance of a Small, Lightweight Track System Using the Computer-Aided Method NTVPM. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2015. http://dx.doi.org/10.21236/ada615244.
Pełny tekst źródłaBenekohal, Rahim, i Hongjae Jeon. Results of Work Zone Queue Analysis Training Classes. Illinois Center for Transportation, listopad 2023. http://dx.doi.org/10.36501/0197-9191/23-024.
Pełny tekst źródła