Artykuły w czasopismach na temat „Mobile nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mobile nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gong, Shuting, Tianyi Wang, Jiaping Lin i Liquan Wang. "Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers". Materials 16, nr 3 (1.02.2023): 1254. http://dx.doi.org/10.3390/ma16031254.
Pełny tekst źródłaKim, Haneul, Muhammad Numan i Changbum Jo. "Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets". Catalysts 9, nr 8 (6.08.2019): 670. http://dx.doi.org/10.3390/catal9080670.
Pełny tekst źródłaLisovsky, A. F. "Thermodynamics of the consolidation of nanoparticles and a macrowparticle". Science of Sintering 42, nr 1 (2010): 15–24. http://dx.doi.org/10.2298/sos1001015l.
Pełny tekst źródłaVerberg, Rolf, Alexander Alexeev i Anna C. Balazs. "Modeling the release of nanoparticles from mobile microcapsules". Journal of Chemical Physics 125, nr 22 (14.12.2006): 224712. http://dx.doi.org/10.1063/1.2404955.
Pełny tekst źródłaJosé-Yacamán, M., C. Gutierrez-Wing, M. Miki, D. Q. Yang, K. N. Piyakis i E. Sacher. "Surface Diffusion and Coalescence of Mobile Metal Nanoparticles". Journal of Physical Chemistry B 109, nr 19 (maj 2005): 9703–11. http://dx.doi.org/10.1021/jp0509459.
Pełny tekst źródłaQi, Zhichong, Lunliang Zhang i Wei Chen. "Transport of graphene oxide nanoparticles in saturated sandy soil". Environ. Sci.: Processes Impacts 16, nr 10 (2014): 2268–77. http://dx.doi.org/10.1039/c4em00063c.
Pełny tekst źródłaPeng, Xinsheng, Baohong Li, Min Hu, Yahao Ling, Yuan Tian, Yanxing Zhou i Yanfang Zhou. "Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC". Journal of Analytical Methods in Chemistry 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/368682.
Pełny tekst źródłaNivedhita G, Rajeshkumar S, Anitha Roy, Nagalingam M i Lakshmi T. "Maranta arundinacea root assisted zinc oxide nanoparticles and its characterisation using TEM and UV-vis spectroscopy". International Journal of Research in Pharmaceutical Sciences 11, nr 3 (6.07.2020): 2968–72. http://dx.doi.org/10.26452/ijrps.v11i3.2387.
Pełny tekst źródłaChan, S. K., S. K. Lok, G. Wang, Y. Cai, Y. J. Wang, N. Wang i I. K. Sou. "Formation mechanism of nanotrenches induced by mobile catalytic nanoparticles". Applied Physics Letters 92, nr 18 (5.05.2008): 183102. http://dx.doi.org/10.1063/1.2912130.
Pełny tekst źródłaSin, Y. K. "Usage of Mobile Application in Assisting Chemical Experiments". Special Issue No.1 1, nr 1 (1.07.2020): 30–40. http://dx.doi.org/10.33093/ijcm.2020.1.x1.3.
Pełny tekst źródłaNádasi, Hajnalka, Áurea Corradi, Ralf Stannarius, Karin Koch, Annette M. Schmidt, Satoshi Aya, Fumito Araoka i Alexey Eremin. "The role of structural anisotropy in the magnetooptical response of an organoferrogel with mobile magnetic nanoparticles". Soft Matter 15, nr 18 (2019): 3788–95. http://dx.doi.org/10.1039/c9sm00219g.
Pełny tekst źródłaMuuronen, Mikko, Shane M. Parker, Enrico Berardo, Alexander Le, Martijn A. Zwijnenburg i Filipp Furche. "Mechanism of photocatalytic water oxidation on small TiO2 nanoparticles". Chemical Science 8, nr 3 (2017): 2179–83. http://dx.doi.org/10.1039/c6sc04378j.
Pełny tekst źródłaSpada, Simone, Stefano Maset i Klemen Bohinc. "Interaction between like-charged surfaces mediated by uniformly charged counter-nanoparticles". International Journal of Modern Physics B 33, nr 10 (20.04.2019): 1950092. http://dx.doi.org/10.1142/s0217979219500929.
Pełny tekst źródłaPoggialini, F., B. Campanella, S. Giannarelli, E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, A. Safi i V. Palleschi. "Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument". Spectrochimica Acta Part B: Atomic Spectroscopy 141 (marzec 2018): 53–58. http://dx.doi.org/10.1016/j.sab.2018.01.005.
Pełny tekst źródłaMonteiro, Lis Marie, Guilherme Diniz Tavares, Elizabeth Igne Ferreira, Vladi Olga Consiglieri, Nadia Araci Bou-Chacra i Raimar Löbenberg. "Reverse phase high-performance liquid chromatography for quantification of hydroxymethylnitrofurazone in polymeric nanoparticles". Brazilian Journal of Pharmaceutical Sciences 51, nr 3 (wrzesień 2015): 561–67. http://dx.doi.org/10.1590/s1984-82502015000300008.
Pełny tekst źródłaDwiastuti, Rini, Marchaban Marchaban, Enade Perdana Istyastono i Florentinus Dika Octa Riswanto. "Analytical Method Validation and Determination of Free Drug Content of 4-n-Butylresorcinol in Complex Lipid Nanoparticles Using RP-HPLC Method". Indonesian Journal of Chemistry 18, nr 3 (30.08.2018): 496. http://dx.doi.org/10.22146/ijc.28919.
Pełny tekst źródłaJin Nam, Hyun, Young Sun Kim, Yoon Jin Kim, Su-Yong Nam i Sung-Hoon Choa. "Enhanced Conductivity in Highly Stretchable Silver and Polymer Nanocomposite Conductors". Journal of Nanoscience and Nanotechnology 21, nr 6 (1.06.2021): 3218–26. http://dx.doi.org/10.1166/jnn.2021.19309.
Pełny tekst źródłaVerberg, Rolf, Alex T. Dale, Prashant Kumar, Alexander Alexeev i Anna C. Balazs. "Healing substrates with mobile, particle-filled microcapsules: designing a ‘repair and go’ system". Journal of The Royal Society Interface 4, nr 13 (3.10.2006): 349–57. http://dx.doi.org/10.1098/rsif.2006.0165.
Pełny tekst źródłaFrolov, Georgiy Aleksandrovich, Irina Aleksandrovna Lundovskikh, Marina Robertovna Shabalina, Mikhail Borisovich Tarasov, Ivan Petrovich Pogorelskiy, Konstantin Igorevich Gurin i Aleksandr Viktorovich Mironin. "Morphofunctional changes in Bacillus cereus cells under the influence of nanoparticles of metals and metal oxides". Disinfection affairs, nr 4 (grudzień 2020): 5–18. http://dx.doi.org/10.35411/2076-457x-2020-4-5-18.
Pełny tekst źródłaLv, Mingxin, Qianghua Xin, Bing Bian, Shitao Yu, Shiwei Liu, Lu Li, Congxia Xie i Yue Liu. "One-pot synthesis of highly active and hydrothermally stable Pd@mHSiO2 yolk–shell-structured nanoparticles for high-temperature reactions in hydrothermal environments". Dalton Transactions 49, nr 2 (2020): 418–30. http://dx.doi.org/10.1039/c9dt04293h.
Pełny tekst źródłaQasim, Irfan, M. Mumtaz, K. Nadeem i S. Qamar Abbas. "Zinc Nanoparticles at Intercrystallite Sites of (Cu0.5Tl0.5)Ba2Ca3Cu4O12−δSuperconductor". Journal of Nanomaterials 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9781790.
Pełny tekst źródłaPhilipse, Albert P., Bonny W. M. Kuipers i Agienus Vrij. "A thermodynamic gauge for mobile counter-ions from colloids and nanoparticles". Faraday Discussions 181 (2015): 103–21. http://dx.doi.org/10.1039/c4fd00261j.
Pełny tekst źródłaCarrillo, Cristihan, Tyne R. Johns, Haifeng Xiong, Andrew DeLaRiva, Sivakumar R. Challa, Ronald S. Goeke, Kateryna Artyushkova, Wei Li, Chang H. Kim i Abhaya K. Datye. "Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions". Journal of Physical Chemistry Letters 5, nr 12 (30.05.2014): 2089–93. http://dx.doi.org/10.1021/jz5009483.
Pełny tekst źródłaChai, Shengchao, Xiao Cao, Fengrui Xu, Liang Zhai, Hu-Jun Qian, Quan Chen, Lixin Wu i Haolong Li. "Multiscale Self-Assembly of Mobile-Ligand Molecular Nanoparticles for Hierarchical Nanocomposites". ACS Nano 13, nr 6 (3.06.2019): 7135–45. http://dx.doi.org/10.1021/acsnano.9b02569.
Pełny tekst źródłaZhou, Yanfang, Chunlian Guo, Hongying Chen, Yudai Zhang, Xinsheng Peng i Ping Zhu. "Determination of Sinomenine in Cubosome Nanoparticles by HPLC Technique". Journal of Analytical Methods in Chemistry 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/931687.
Pełny tekst źródłaMishra, S. R., Debi P. Bhatta, J. K. Dash i Oluwole Daniel Makinde. "A Semi-Analytical Approach to Time Dependent Squeezing Flow of Cu and Ag Water-Based Nanofluids". Defect and Diffusion Forum 393 (czerwiec 2019): 121–37. http://dx.doi.org/10.4028/www.scientific.net/ddf.393.121.
Pełny tekst źródłaPacheco, Marta, Beatriz Jurado-Sánchez i Alberto Escarpa. "Lab-on-a-micromotor: catalytic Janus particles as mobile microreactors for tailored synthesis of nanoparticles". Chemical Science 9, nr 42 (2018): 8056–64. http://dx.doi.org/10.1039/c8sc03681k.
Pełny tekst źródłaKuzovkov, V. N., G. Zvejnieks i E. A. Kotomin. "Theory of non-equilibrium critical phenomena in three-dimensional condensed systems of charged mobile nanoparticles". Phys. Chem. Chem. Phys. 16, nr 27 (2014): 13974–83. http://dx.doi.org/10.1039/c3cp55181d.
Pełny tekst źródłaUrbanski, Martin, i Jan P. F. Lagerwall. "Nanoparticles dispersed in liquid crystals: impact on conductivity, low-frequency relaxation and electro-optical performance". Journal of Materials Chemistry C 4, nr 16 (2016): 3485–91. http://dx.doi.org/10.1039/c6tc00659k.
Pełny tekst źródłaBhattacharya, S., i A. Ghosh. "Effect of ZnO Nanoparticles on the Structure and Ionic Relaxation of Poly(ethylene oxide)-LiI Polymer Electrolyte Nanocomposites". Journal of Nanoscience and Nanotechnology 8, nr 4 (1.04.2008): 1922–26. http://dx.doi.org/10.1166/jnn.2008.18257.
Pełny tekst źródłaDallacasa, V. "Enhanced Size-Dependent Piezoelectricity in Nanostructured Films". ISRN Materials Science 2012 (8.05.2012): 1–5. http://dx.doi.org/10.5402/2012/894072.
Pełny tekst źródłaHsu, Miao-Hsing, Wei-Feng Fang, Yu-Hsuan Lai, Jing-Tang Yang, Tsung-Lin Tsai i Dar-Bin Shieh. "Enhanced mobile hybridization of gold nanoparticles decorated with oligonucleotide in microchannel devices". Lab on a Chip 10, nr 19 (2010): 2583. http://dx.doi.org/10.1039/c004753h.
Pełny tekst źródłaHasen, Huda Majid, i Rasha Jasim Tuama. "Review about the Applications of Nanoparticles in Batteries". Journal of Engineering 29, nr 08 (1.08.2023): 47–60. http://dx.doi.org/10.31026/j.eng.2023.08.04.
Pełny tekst źródłaNastulyavichus, Alena, Eteri Tolordava, Andrey Rudenko, Darya Zazymkina, Pavel Shakhov, Nikolay Busleev, Yulia Romanova, Andrey Ionin i Sergey Kudryashov. "In Vitro Destruction of Pathogenic Bacterial Biofilms by Bactericidal Metallic Nanoparticles via Laser-Induced Forward Transfer". Nanomaterials 10, nr 11 (15.11.2020): 2259. http://dx.doi.org/10.3390/nano10112259.
Pełny tekst źródłaRaagulan, Kanthasamy, Ramanaskanda Braveenth, Lee Ro Lee, Joonsik Lee, Bo Kim, Jai Moon, Sang Lee i Kyu Chai. "Fabrication of Flexible, Lightweight, Magnetic Mushroom Gills and Coral-Like MXene–Carbon Nanotube Nanocomposites for EMI Shielding Application". Nanomaterials 9, nr 4 (2.04.2019): 519. http://dx.doi.org/10.3390/nano9040519.
Pełny tekst źródłaRodrigues, Caroline Danziato, Najeh Maissar Khalil i Rubiana Mara Mainardes. "Determination of amphotericin B in PLA-PEG blend nanoparticles by HPLC-PDA". Brazilian Journal of Pharmaceutical Sciences 50, nr 4 (grudzień 2014): 859–68. http://dx.doi.org/10.1590/s1984-82502014000400021.
Pełny tekst źródłada Rocha Lindner, Gabriela, Najeh Maissar Khalil i Rubiana Mara Mainardes. "Resveratrol-Loaded Polymeric Nanoparticles: Validation of an HPLC-PDA Method to Determine the Drug Entrapment and Evaluation of Its Antioxidant Activity". Scientific World Journal 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/506083.
Pełny tekst źródłaLi, Shuang, Ziyue Qin, Jie Fu i Qiya Gao. "Nanobiosensing Based on Electro-Optically Modulated Technology". Nanomaterials 13, nr 17 (23.08.2023): 2400. http://dx.doi.org/10.3390/nano13172400.
Pełny tekst źródłaPal, Nabanita, Jun-Hyeok Lee i Eun-Bum Cho. "Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles". Nanomaterials 10, nr 11 (25.10.2020): 2122. http://dx.doi.org/10.3390/nano10112122.
Pełny tekst źródłaAhmad, Nur Suraya, Shahidan Radiman i Wan Zuhairi Wan Yaacob. "Stability and Transportation of Iron Oxide Nanoparticles in Subsurface Water and Soil". ASM Science Journal 14 (20.04.2021): 1–9. http://dx.doi.org/10.32802/asmscj.2020.488.
Pełny tekst źródłaRathnakumar, Sriram, Seemesh Bhaskar, Aayush Rai, Darisi V. V. Saikumar, Naga Sai Visweswar Kambhampati, Venketesh Sivaramakrishnan i Sai Sathish Ramamurthy. "Plasmon-Coupled Silver Nanoparticles for Mobile Phone-Based Attomolar Sensing of Mercury Ions". ACS Applied Nano Materials 4, nr 8 (21.07.2021): 8066–80. http://dx.doi.org/10.1021/acsanm.1c01347.
Pełny tekst źródłaPery, Tal, Katrin Pelzer, Gerd Buntkowsky, Karine Philippot, Hans-Heinrich Limbach i Bruno Chaudret. "Direct NMR Evidence for the Presence of Mobile Surface Hydrides on Ruthenium Nanoparticles". ChemPhysChem 6, nr 4 (15.04.2005): 605–7. http://dx.doi.org/10.1002/cphc.200400621.
Pełny tekst źródłaXiao, Haijun, i Vladimír Sedlařík. "A Rapid and Sensitive HPLC Method for Simultaneous Determination of Irinotecan Hydrochloride and Curcumin in Co-delivered Polymeric Nanoparticles". Journal of Chromatographic Science 58, nr 7 (6.07.2020): 651–60. http://dx.doi.org/10.1093/chromsci/bmaa033.
Pełny tekst źródłaFarrakhova, D. S., I. D. Romanishkin, D. V. Yakovlev, Yu S. Maklygina, V. A. Oleinikov, P. V. Fedotov, M. V. Kravchik, L. Bezdetnaya i V. B. Loschenov. "Correlation of spectroscopic and structural properties of indocyanine green j-aggregates". Biomedical Photonics 11, nr 3 (15.11.2022): 4–16. http://dx.doi.org/10.24931/2413-9432-2022-11-3-4-16.
Pełny tekst źródłaAndriushenko, Peter, Leonid L. Afremov i Maria Chernova. "Simulation of the Motion of Magnetic Nanoparticles in Human Tissues". Solid State Phenomena 215 (kwiecień 2014): 284–87. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.284.
Pełny tekst źródłaD., Nirmal. "HIGH PERFORMANCE FLEXIBLE NANOPARTICLES BASED ORGANIC ELECTRONICS". December 2019 2019, nr 02 (24.12.2019): 99–106. http://dx.doi.org/10.36548/jei.2019.2.005.
Pełny tekst źródłaMontaña, Maia, María Leguizamón Aparicio, Marco Ocsachoque, Marisa Navas, Ivoneide de C. L. Barros, Enrique Rodriguez-Castellón, Mónica Casella i Ileana Lick. "Zirconia-Supported Silver Nanoparticles for the Catalytic Combustion of Pollutants Originating from Mobile Sources". Catalysts 9, nr 3 (25.03.2019): 297. http://dx.doi.org/10.3390/catal9030297.
Pełny tekst źródłaChung, H. J., A. Taubert, R. D. Deshmukh i R. J. Composto. "Mobile nanoparticles and their effect on phase separation dynamics in thin-film polymer blends". Europhysics Letters (EPL) 68, nr 2 (październik 2004): 219–25. http://dx.doi.org/10.1209/epl/i2004-10242-2.
Pełny tekst źródłaLiu, Fu-Ken, i Guor-Tzo Wei. "Effect of Mobile-Phase Additives on Separation of Gold Nanoparticles by Size-Exclusion Chromatography". Chromatographia 59, nr 1-2 (styczeń 2004): 115–19. http://dx.doi.org/10.1365/s10337-003-0135-2.
Pełny tekst źródłaNegi, Surindra, Vir Singh i Jyoti Rawat. "GREEN SYNTHESIS OF SILVER NANOPARTICLES USING MICROALGAL EXTRACT AND ITS APPLICATION IN METAL ION REMOVAL FROM AQUEOUS SOLUTION". Journal of Experimental Biology and Agricultural Sciences 9, nr 2 (25.04.2021): 214–30. http://dx.doi.org/10.18006/2021.9(2).214.230.
Pełny tekst źródła