Gotowa bibliografia na temat „Mn TWIP Steel”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mn TWIP Steel”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mn TWIP Steel"
Razavi, Gholam Reza. "The Study of Type Twin Annealing in High Mn Steel". Applied Mechanics and Materials 148-149 (grudzień 2011): 1085–88. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1085.
Pełny tekst źródłaUEJI, Rintaro. "Alloyed Steel(TWIP Steel, High Mn Steel)". Journal of the Japan Society for Technology of Plasticity 53, nr 620 (2012): 814–17. http://dx.doi.org/10.9773/sosei.53.814.
Pełny tekst źródłaWang, Li Hui, Di Tang, Hai Tao Jiang, Ji Bin Liu i Yu Chen. "Effects of Different Manganese Content on Microstructures and Properties of TWIP Steel". Advanced Materials Research 399-401 (listopad 2011): 254–58. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.254.
Pełny tekst źródłaBastidas, David M., Jacob Ress, Juan Bosch i Ulises Martin. "Corrosion Mechanisms of High-Mn Twinning-Induced Plasticity (TWIP) Steels: A Critical Review". Metals 11, nr 2 (7.02.2021): 287. http://dx.doi.org/10.3390/met11020287.
Pełny tekst źródłaMoon, K. M., D. A. Kim, Y. H. Kim i M. H. Lee. "Effect of Mn content on corrosion characteristics of lean Mn TWIP steel". International Journal of Modern Physics B 32, nr 19 (18.07.2018): 1840083. http://dx.doi.org/10.1142/s0217979218400830.
Pełny tekst źródłaMartin, Ulises, Jacob Ress, Juan Bosch i David M. Bastidas. "Effect of Thermo-Mechanical Processing on the Corrosion Behavior of Fe−30Mn−5Al−0.5C TWIP Steel". Applied Sciences 10, nr 24 (19.12.2020): 9104. http://dx.doi.org/10.3390/app10249104.
Pełny tekst źródłaYang, Yang, Chun Fu Li i Kai Hong Song. "Effect of Strain Rate on the Microstructures and Properties of Hot–Rolled TWIP Steel in the Solution Condition". Advanced Materials Research 430-432 (styczeń 2012): 256–59. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.256.
Pełny tekst źródłaOlugbade, Temitope Olumide. "Stress corrosion cracking and precipitation strengthening mechanism in TWIP steels: progress and prospects". Corrosion Reviews 38, nr 6 (18.11.2020): 473–88. http://dx.doi.org/10.1515/corrrev-2020-0052.
Pełny tekst źródłaHernández-Belmontes, Humberto, Ignacio Mejía i Cuauhtémoc Maldonado. "Ab Initio Study of Weldability of a High-Manganese Austenitic Twinning-Induced Plasticity (TWIP) Steel Microalloyed with Boron". MRS Proceedings 1812 (2016): 35–40. http://dx.doi.org/10.1557/opl.2016.15.
Pełny tekst źródłaPeng, Ru Lin, Xiao Peng Liu, Yan Dong Wang, Shu Yan Zhang, Yong Feng Shen i Sten Johansson. "In-Situ Neutron Diffraction Study of the Deformation Behaviour of Two High-Manganese Austenitic Steels". Materials Science Forum 681 (marzec 2011): 474–79. http://dx.doi.org/10.4028/www.scientific.net/msf.681.474.
Pełny tekst źródłaRozprawy doktorskie na temat "Mn TWIP Steel"
Hamada, A. S. (Atef Saad). "Manufacturing, mechanical properties and corrosion behaviour of high-Mn TWIP steels". Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514285844.
Pełny tekst źródłaKalsar, Rajib. "Evolution of Microstructure and Texture in Manganese Steels". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4244.
Pełny tekst źródłaHuang, Yu-chang, i 黃玉璋. "Effect of Mn、Al on mechanical properties in TWIP steels after cold rolling". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/97387087075257754786.
Pełny tekst źródła國立高雄大學
化學工程及材料工程學系碩士班
99
This study focused on the effect of Mn and Al alloys on the mechanical properties in cold-rolled TWIP steels, however, the effect of strain rate on mechanical properties was also investigated. In this study, steels were adopted as the test materials. According to thermodynamic calculation, the stacking fault energy of the 21Mn、24Mn and 24Mn-4Al were 21.9 mJ/m2, 29.2 mJ/m2 and 58.7 mJ/m2, respectively. It reveals that stacking fault energy increased with addition of manganese and aluminum. As the mechanical property, tensile test was carried out to investigate the TWIP steels tensile strength (T.S.), elongation (El.), and toughness (T.S.×El.) with various strain rates of 3.3×10-3s-1、3.3×10-2s-1、10-1s-1. The results showed that 21Mn possessed the maximum (T.S.) of 907.6MPa. and 24Mn possessed the maximum elongation (El.) of 78.9%. In addition, 24Mn-4Al possessed the maximum Y.S. of 352.9MPa. Summary the results of mechanical properties showed that 24Mn steel possessed the superior toughness of 69645.03MPa% (T.S.×El. value), while strain rate of 3.3×10-3s-1. 21Mn and 24Mn-4Al steels were 54819.04 MPa% and 43918.75 MPa%, respectively. From XRD results, 24Mn and 24Mn-4Al steels possessed stableγphase, even though after deformed. It was noticed the 21Mn specimen possessed γ(F.C.C.) structure before tensile test and obtained the phase transformation fromγ transform to εafter tensile test. The TEM results revealed ε-martensite and twin co-exist in 21Mn, it supported that deformation mechanism is TRIP and TWIP under tensile test. Only mechanical twin structure was observed in 24Mn, resulting in obtaining TWIP deformation mechanism. Moreover 24Mn-4Al possessed dislocation entanglement phenomenon and twin structure; as a result its deformation mechanism was classified to dislocation slip and partly TWIP mode. As the effect of strain rate on mechanical property with TWIP steels, the elongation (El.) of 21Mn was increased from 60.4% to 75.07% with strain rate increasing. In addition, the value of T.S.×El. was also increased to 68024.02 MPa%. However, 24Mn possessed the highest value of T.S.×El. reached to 69029 MPa%. But the strain rate was not affect the mechanical property of 24Mn-4Al significantly.
Jhang, Kai-Bin, i 章凱斌. "Effect of Mn and Al-elements on the properties of TWIP steels after hot rolling". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/13702985416164122416.
Pełny tekst źródła義守大學
材料科學與工程學系碩士班
98
The effects of Mn contents (19wt%、21wt%、24wt%) and Al contents (2wt%、4wt%) on the mechanical characteristics of twinning induced plasticity steels (TWIP steels) were investigated. Two major works on the TWIP steels with various Mn and Al contents were carried out in this study including: (1) the varied of stacking fault energy (SFE), high temperature ductility, and microstructure of TWIP steels with Al content; (2) the effect of hot rolling and cold rolling on microstructure and mechanical property of TWIP steels.The SFE of TWIP steels were calculated using thermodynamics. It is found that the SFE increases with inreasing Mn and Al contents. The SFE of TWIP steels studied are ranging from18 to 58 mJ/m2.Concerning the high temperature ductility, the reduction of area (RA) of all the steels decreased with decreasing deformation temperature. When the steels were deformed at 1100℃, the steel with 24wt% Mn content exhibited highest RA. The RA of TWIP steels with 24 wt% Mn content decreased with the addition of Al. The RA of the steel with 24wt%Mn-4wt%Al content was lower than 40% when it was deformed at 900℃, indicating a very poor hot workability.The mechanical performance of as-hot rolled TWIP steels are indicated by the product of tensile strength and total elongation (T.S.×El.). The steel with 21wt% Mn content exhibited best T.S.×El. product, whereas the steel with 24wt%Mn-4wt%Al content exhibited lowest product.Concerning the mechanical performance of TWIP steels subjected to SAT (SAT, 1000℃×20min.), both the steels with 21 and 24 wt% Mn contents exhibited the product over 70 000MPa%, whereas the steel with 24wt%Mn-4wt%Al content gain possessed lowest product. Supposed that the deformation mechanism is between twining induced plasticity and slip with the stacking fault energy of Al element about 60mJ/m2. Compare with C-Mn steels, TWIP steels possess the superior plasticity with Al content because of the slip mechanism.
Części książek na temat "Mn TWIP Steel"
Dobrzański, Leszek A., Janusz Mazurkiewicz, Wojciech Borek i Małgorzata Czaja. "Newly-Developed High-Manganese Fe–Mn–(Al, Si) Austenitic TWIP and TRIP Steels". W Rolling of Advanced High Strength Steels, 224–88. Boca Raton, FL : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120577-6.
Pełny tekst źródłaDobrzański, L. A., W. Borek i J. Mazurkiewicz. "TWIP Mechanism in High-Mn Austenitic Steels and Its Effect on Steels Properties". W Frontiers in Materials Processing, Applications, Research and Technology, 321–31. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4819-7_27.
Pełny tekst źródłaVerbeken, Kim, Lieven Bracke, Leo Kestens i Jan Penning. "Microstructural and Textural Evolutions in a Cold Rolled High mn Twlp Steel". W Ceramic Transactions Series, 341–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470444191.ch38.
Pełny tekst źródłaCollet, J. L., Françoise Bley, Alexis Deschamps, H. de Monestrol, Jean François Berar i Colin Scott. "The Deformation Mechanisms of TWIP Steels (Fe-Mn-C) Viewed by X-Ray Diffraction". W Solid State Phenomena, 53–56. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-40-x.53.
Pełny tekst źródłaCollet, J. L., Françoise Bley, Alexis Deschamps i Colin Scott. "Study of the Deformation Mechanisms of TWIP Steels (Fe-Mn-C) by X-Ray Diffraction". W THERMEC 2006 Supplement, 822–27. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-429-4.822.
Pełny tekst źródłaHamada, A. S., L. Pentti Karjalainen, Mahesh C. Somani i R. M. Ramadan. "Deformation Mechanisms in High-Al Bearing High-Mn TWIP Steels in Hot Compression and in Tension at Low Temperatures". W Materials Science Forum, 217–22. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-434-0.217.
Pełny tekst źródłaDe Cooman, B. C. "High Mn TWIP steel and medium Mn steel". W Automotive Steels, 317–85. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-08-100638-2.00011-0.
Pełny tekst źródłaDe Cooman, B. C., Kwang-geun Chin i Jinkyung Kim. "High Mn TWIP Steels for Automotive Applications". W New Trends and Developments in Automotive System Engineering. InTech, 2011. http://dx.doi.org/10.5772/14086.
Pełny tekst źródłaStreszczenia konferencji na temat "Mn TWIP Steel"
Varga, M., L. Janka, M. Rodríguez Ripoll, L. M. Berger, S. Thiele, V. Matikainen, P. Vuoristo, L. Janka i H. Ben Hamouda. "High Temperature Sliding of TiC Based Hardmetal Coatings Against TWIP Steel". W ITSC2021, redaktorzy F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau i in. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0278.
Pełny tekst źródłaDolzhenko, P., M. Tikhonova, A. Belyakov i R. Kaibyshev. "Dynamic recrystallization of a high-Mn TWIP steel during multiple forging at 800°C". W PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083309.
Pełny tekst źródłaKusakin, Pavel, Andrey Belyakov i Rustam Kaibyshev. "Analysis of the tensile behavior of high-Mn TWIP steel based on the microstructural evolution". W ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966418.
Pełny tekst źródłada Silva Lima, M. N. "Microstructural and corrosion study of a “non-comercial” high manganese steel". W Superplasticity in Advanced Materials. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902615-37.
Pełny tekst źródłaTikhonova, M., P. Dolzhenko, A. Belyakov i R. Kaibyshev. "Effect of hot working conditions on microstructure and mechanical properties of a high-Mn TWIP steel". W PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083547.
Pełny tekst źródłaDarcis, Philippe P., Israel Marines-Garcia, Stephen J. Hudak, Mariano Armengol i Hector M. Quintanilla. "Sour Environmentally Assisted Fatigue of Welded SCR Materials: Post-Weld Finishing Treatment Evaluation". W ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-21026.
Pełny tekst źródłaKhan, Rashid, Tasneem Pervez i Omar S. Al-Abri. "Modeling and Simulations of Transformation and Twinning Induced Plasticity in Advanced High Strength Austenitic Steels". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51953.
Pełny tekst źródłaDarcis, Philippe P., Israel Marines-Garcia, Eduardo A. Ruiz, Elsa C. Marques, Mariano Armengol i Hector M. Quintanilla. "Full Scale Fatigue Performance of Pre-Strained SCR Girth Welds: Comparison of Different Reeling Frames". W ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-21025.
Pełny tekst źródłaHoltam, Colum M., i David P. Baxter. "Fatigue Performance of Sour Deepwater Riser Welds: Crack Growth vs. Endurance". W ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49581.
Pełny tekst źródła