Artykuły w czasopismach na temat „ML fairness”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ML fairness”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Weinberg, Lindsay. "Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches". Journal of Artificial Intelligence Research 74 (6.05.2022): 75–109. http://dx.doi.org/10.1613/jair.1.13196.
Pełny tekst źródłaBærøe, Kristine, Torbjørn Gundersen, Edmund Henden i Kjetil Rommetveit. "Can medical algorithms be fair? Three ethical quandaries and one dilemma". BMJ Health & Care Informatics 29, nr 1 (kwiecień 2022): e100445. http://dx.doi.org/10.1136/bmjhci-2021-100445.
Pełny tekst źródłaYanjun Li, Yanjun Li, Huan Huang Yanjun Li, Qiang Geng Huan Huang, Xinwei Guo Qiang Geng i Yuyu Yuan Xinwei Guo. "Fairness Measures of Machine Learning Models in Judicial Penalty Prediction". 網際網路技術學刊 23, nr 5 (wrzesień 2022): 1109–16. http://dx.doi.org/10.53106/160792642022092305019.
Pełny tekst źródłaGhosh, Bishwamittra, Debabrota Basu i Kuldeep S. Meel. "Algorithmic Fairness Verification with Graphical Models". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 9 (28.06.2022): 9539–48. http://dx.doi.org/10.1609/aaai.v36i9.21187.
Pełny tekst źródłaKuzucu, Selim, Jiaee Cheong, Hatice Gunes i Sinan Kalkan. "Uncertainty as a Fairness Measure". Journal of Artificial Intelligence Research 81 (13.10.2024): 307–35. http://dx.doi.org/10.1613/jair.1.16041.
Pełny tekst źródłaWeerts, Hilde, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl i Frank Hutter. "Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML". Journal of Artificial Intelligence Research 79 (17.02.2024): 639–77. http://dx.doi.org/10.1613/jair.1.14747.
Pełny tekst źródłaMakhlouf, Karima, Sami Zhioua i Catuscia Palamidessi. "On the Applicability of Machine Learning Fairness Notions". ACM SIGKDD Explorations Newsletter 23, nr 1 (26.05.2021): 14–23. http://dx.doi.org/10.1145/3468507.3468511.
Pełny tekst źródłaSingh, Vivek K., i Kailash Joshi. "Integrating Fairness in Machine Learning Development Life Cycle: Fair CRISP-DM". e-Service Journal 14, nr 2 (grudzień 2022): 1–24. http://dx.doi.org/10.2979/esj.2022.a886946.
Pełny tekst źródłaZhou, Zijian, Xinyi Xu, Rachael Hwee Ling Sim, Chuan Sheng Foo i Bryan Kian Hsiang Low. "Probably Approximate Shapley Fairness with Applications in Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 5 (26.06.2023): 5910–18. http://dx.doi.org/10.1609/aaai.v37i5.25732.
Pełny tekst źródłaSreerama, Jeevan, i Gowrisankar Krishnamoorthy. "Ethical Considerations in AI Addressing Bias and Fairness in Machine Learning Models". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1, nr 1 (14.09.2022): 130–38. http://dx.doi.org/10.60087/jklst.vol1.n1.p138.
Pełny tekst źródłaBlow, Christina Hastings, Lijun Qian, Camille Gibson, Pamela Obiomon i Xishuang Dong. "Comprehensive Validation on Reweighting Samples for Bias Mitigation via AIF360". Applied Sciences 14, nr 9 (30.04.2024): 3826. http://dx.doi.org/10.3390/app14093826.
Pełny tekst źródłaTeodorescu, Mike, Lily Morse, Yazeed Awwad i Gerald Kane. "Failures of Fairness in Automation Require a Deeper Understanding of Human-ML Augmentation". MIS Quarterly 45, nr 3 (1.09.2021): 1483–500. http://dx.doi.org/10.25300/misq/2021/16535.
Pełny tekst źródłaPessach, Dana, i Erez Shmueli. "A Review on Fairness in Machine Learning". ACM Computing Surveys 55, nr 3 (30.04.2023): 1–44. http://dx.doi.org/10.1145/3494672.
Pełny tekst źródłaGhosh, Bishwamittra, Debabrota Basu i Kuldeep S. Meel. "Justicia: A Stochastic SAT Approach to Formally Verify Fairness". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 9 (18.05.2021): 7554–63. http://dx.doi.org/10.1609/aaai.v35i9.16925.
Pełny tekst źródłaSikstrom, Laura, Marta M. Maslej, Katrina Hui, Zoe Findlay, Daniel Z. Buchman i Sean L. Hill. "Conceptualising fairness: three pillars for medical algorithms and health equity". BMJ Health & Care Informatics 29, nr 1 (styczeń 2022): e100459. http://dx.doi.org/10.1136/bmjhci-2021-100459.
Pełny tekst źródłaDrira, Mohamed, Sana Ben Hassine, Michael Zhang i Steven Smith. "Machine Learning Methods in Student Mental Health Research: An Ethics-Centered Systematic Literature Review". Applied Sciences 14, nr 24 (16.12.2024): 11738. https://doi.org/10.3390/app142411738.
Pełny tekst źródłaKumbo, Lazaro Inon, Victor Simon Nkwera i Rodrick Frank Mero. "Evaluating the Ethical Practices in Developing AI and Ml Systems in Tanzania". ABUAD Journal of Engineering Research and Development (AJERD) 7, nr 2 (wrzesień 2024): 340–51. http://dx.doi.org/10.53982/ajerd.2024.0702.33-j.
Pełny tekst źródłaEzzeldin, Yahya H., Shen Yan, Chaoyang He, Emilio Ferrara i A. Salman Avestimehr. "FairFed: Enabling Group Fairness in Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 7494–502. http://dx.doi.org/10.1609/aaai.v37i6.25911.
Pełny tekst źródłaFessenko, Dessislava. "Ethical Requirements for Achieving Fairness in Radiology Machine Learning: An Intersectionality and Social Embeddedness Approach". Journal of Health Ethics 20, nr 1 (2024): 37–49. http://dx.doi.org/10.18785/jhe.2001.04.
Pełny tekst źródłaCheng, Lu. "Demystifying Algorithmic Fairness in an Uncertain World". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 20 (24.03.2024): 22662. http://dx.doi.org/10.1609/aaai.v38i20.30278.
Pełny tekst źródłaArslan, Ayse. "Mitigation Techniques to Overcome Data Harm in Model Building for ML". International Journal of Artificial Intelligence & Applications 13, nr 1 (31.01.2022): 73–82. http://dx.doi.org/10.5121/ijaia.2022.13105.
Pełny tekst źródłaVartak, Manasi. "From ML models to intelligent applications". Proceedings of the VLDB Endowment 14, nr 13 (wrzesień 2021): 3419. http://dx.doi.org/10.14778/3484224.3484240.
Pełny tekst źródłaArjunan, Gopalakrishnan. "Enhancing Data Quality and Integrity in Machine Learning Pipelines: Approaches for Detecting and Mitigating Bias". International Journal of Scientific Research and Management (IJSRM) 10, nr 09 (24.09.2022): 940–45. http://dx.doi.org/10.18535/ijsrm/v10i9.ec04.
Pełny tekst źródłaSingh, Arashdeep, Jashandeep Singh, Ariba Khan i Amar Gupta. "Developing a Novel Fair-Loan Classifier through a Multi-Sensitive Debiasing Pipeline: DualFair". Machine Learning and Knowledge Extraction 4, nr 1 (12.03.2022): 240–53. http://dx.doi.org/10.3390/make4010011.
Pełny tekst źródłaTambari Faith Nuka i Amos Abidemi Ogunola. "AI and machine learning as tools for financial inclusion: challenges and opportunities in credit scoring". International Journal of Science and Research Archive 13, nr 2 (30.11.2024): 1052–67. http://dx.doi.org/10.30574/ijsra.2024.13.2.2258.
Pełny tekst źródłaKeswani, Vijay, i L. Elisa Celis. "Algorithmic Fairness From the Perspective of Legal Anti-discrimination Principles". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16.10.2024): 724–37. http://dx.doi.org/10.1609/aies.v7i1.31674.
Pełny tekst źródłaDetassis, Fabrizio, Michele Lombardi i Michela Milano. "Teaching the Old Dog New Tricks: Supervised Learning with Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 5 (18.05.2021): 3742–49. http://dx.doi.org/10.1609/aaai.v35i5.16491.
Pełny tekst źródłaSunday Adeola Oladosu, Christian Chukwuemeka Ike, Peter Adeyemo Adepoju, Adeoye Idowu Afolabi, Adebimpe Bolatito Ige i Olukunle Oladipupo Amoo. "Frameworks for ethical data governance in machine learning: Privacy, fairness, and business optimization". Magna Scientia Advanced Research and Reviews 7, nr 2 (30.04.2023): 096–106. https://doi.org/10.30574/msarr.2023.7.2.0043.
Pełny tekst źródłaCzarnowska, Paula, Yogarshi Vyas i Kashif Shah. "Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics". Transactions of the Association for Computational Linguistics 9 (2021): 1249–67. http://dx.doi.org/10.1162/tacl_a_00425.
Pełny tekst źródłaPark, Sojung, Eunhye Ahn, Tae-Hyuk Ahn, SangNam Ahn, Soobin Park, Eunsun Kwon, Seoyeon Ahn i Yuanyuan Yang. "ROLE OF MACHINE LEARNING (ML) IN AGING IN PLACE RESEARCH: A SCOPING REVIEW". Innovation in Aging 8, Supplement_1 (grudzień 2024): 1215. https://doi.org/10.1093/geroni/igae098.3890.
Pełny tekst źródłaShah, Kanan, Yassamin Neshatvar, Elaine Shum i Madhur Nayan. "Optimizing the fairness of survival prediction models for racial/ethnic subgroups: A study on predicting post-operative survival in stage IA and IB non-small cell lung cancer." JCO Oncology Practice 20, nr 10_suppl (październik 2024): 380. http://dx.doi.org/10.1200/op.2024.20.10_suppl.380.
Pełny tekst źródłaIslam, Rashidul, Huiyuan Chen i Yiwei Cai. "Fairness without Demographics through Shared Latent Space-Based Debiasing". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 11 (24.03.2024): 12717–25. http://dx.doi.org/10.1609/aaai.v38i11.29167.
Pełny tekst źródłaLamba, Hemank, Kit T. Rodolfa i Rayid Ghani. "An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings". ACM SIGKDD Explorations Newsletter 23, nr 1 (26.05.2021): 69–85. http://dx.doi.org/10.1145/3468507.3468518.
Pełny tekst źródłaShook, Jim, Robyn Smith i Alex Antonio. "Transparency and Fairness in Machine Learning Applications". Symposium Edition - Artificial Intelligence and the Legal Profession 4, nr 5 (kwiecień 2018): 443–63. http://dx.doi.org/10.37419/jpl.v4.i5.2.
Pełny tekst źródłaDing, Xueying, Rui Xi i Leman Akoglu. "Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16.10.2024): 384–95. http://dx.doi.org/10.1609/aies.v7i1.31644.
Pełny tekst źródłaGalhotra, Sainyam, Karthikeyan Shanmugam, Prasanna Sattigeri i Kush R. Varshney. "Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes". Entropy 23, nr 12 (25.11.2021): 1571. http://dx.doi.org/10.3390/e23121571.
Pełny tekst źródłaXiao, Ying, Jie M. Zhang, Yepang Liu, Mohammad Reza Mousavi, Sicen Liu i Dingyuan Xue. "MirrorFair: Fixing Fairness Bugs in Machine Learning Software via Counterfactual Predictions". Proceedings of the ACM on Software Engineering 1, FSE (12.07.2024): 2121–43. http://dx.doi.org/10.1145/3660801.
Pełny tekst źródłaIgoche, Bern Igoche, Olumuyiwa Matthew, Peter Bednar i Alexander Gegov. "Integrating Structural Causal Model Ontologies with LIME for Fair Machine Learning Explanations in Educational Admissions". Journal of Computing Theories and Applications 2, nr 1 (25.06.2024): 65–85. http://dx.doi.org/10.62411/jcta.10501.
Pełny tekst źródłaVajiac, Catalina, Arun Frey, Joachim Baumann, Abigail Smith, Kasun Amarasinghe, Alice Lai, Kit T. Rodolfa i Rayid Ghani. "Preventing Eviction-Caused Homelessness through ML-Informed Distribution of Rental Assistance". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 20 (24.03.2024): 22393–400. http://dx.doi.org/10.1609/aaai.v38i20.30246.
Pełny tekst źródłaMetevier, Blossom. "Pursuing Social Good: An Overview of Short- and Long-Term Fairness in Classification". ACM SIGCAS Computers and Society 52, nr 2 (wrzesień 2023): 6. http://dx.doi.org/10.1145/3656021.3656022.
Pełny tekst źródłaBantilan, Niels. "Themis-ml: A Fairness-Aware Machine Learning Interface for End-To-End Discrimination Discovery and Mitigation". Journal of Technology in Human Services 36, nr 1 (2.01.2018): 15–30. http://dx.doi.org/10.1080/15228835.2017.1416512.
Pełny tekst źródłaElglaly, Yasmine N., i Yudong Liu. "Promoting Machine Learning Fairness Education through Active Learning and Reflective Practices". ACM SIGCSE Bulletin 55, nr 3 (lipiec 2023): 4–6. http://dx.doi.org/10.1145/3610585.3610589.
Pełny tekst źródłaSeastedt, Kenneth P., Patrick Schwab, Zach O’Brien, Edith Wakida, Karen Herrera, Portia Grace F. Marcelo, Louis Agha-Mir-Salim i in. "Global healthcare fairness: We should be sharing more, not less, data". PLOS Digital Health 1, nr 10 (6.10.2022): e0000102. http://dx.doi.org/10.1371/journal.pdig.0000102.
Pełny tekst źródłaWang, Mini Han, Ruoyu Zhou, Zhiyuan Lin, Yang Yu, Peijin Zeng, Xiaoxiao Fang, Jie yang i in. "Can Explainable Artificial Intelligence Optimize the Data Quality of Machine Learning Model? Taking Meibomian Gland Dysfunction Detections as a Case Study". Journal of Physics: Conference Series 2650, nr 1 (1.11.2023): 012025. http://dx.doi.org/10.1088/1742-6596/2650/1/012025.
Pełny tekst źródłaRaza, Shaina, Parisa Osivand Pour i Syed Raza Bashir. "Fairness in Machine Learning Meets with Equity in Healthcare". Proceedings of the AAAI Symposium Series 1, nr 1 (3.10.2023): 149–53. http://dx.doi.org/10.1609/aaaiss.v1i1.27493.
Pełny tekst źródłaBegum, Shaik Salma. "JARVIS - Customer Support Chatbot with ML". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, nr 01 (13.01.2024): 1–12. http://dx.doi.org/10.55041/ijsrem28053.
Pełny tekst źródłaTang, Zicheng. "The Role of AI and ML in Transforming Marketing Strategies: Insights from Recent Studies". Advances in Economics, Management and Political Sciences 108, nr 1 (27.09.2024): 132–39. http://dx.doi.org/10.54254/2754-1169/108/20242009.
Pełny tekst źródłaPatel, Ekta V., Kirit J. Modi, i Maitri H. Bhavsar. "Employee Performance Evaluation Using Machine Learning". International Journal of Advances in Engineering and Management 6, nr 11 (listopad 2024): 160–64. https://doi.org/10.35629/5252-0611160164.
Pełny tekst źródłaGoretzko, David, i Laura Sophia Finja Israel. "Pitfalls of Machine Learning-Based Personnel Selection". Journal of Personnel Psychology 21, nr 1 (styczeń 2022): 37–47. http://dx.doi.org/10.1027/1866-5888/a000287.
Pełny tekst źródłaMangal, Mudit, i Zachary A. Pardos. "Implementing equitable and intersectionality‐aware ML in education: A practical guide". British Journal of Educational Technology, 23.05.2024. http://dx.doi.org/10.1111/bjet.13484.
Pełny tekst źródła