Gotowa bibliografia na temat „Microwave Soil Moisture Retrieval Algorithm”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microwave Soil Moisture Retrieval Algorithm”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microwave Soil Moisture Retrieval Algorithm"
Karthikeyan, Lanka, Ming Pan, Dasika Nagesh Kumar i Eric F. Wood. "Effect of Structural Uncertainty in Passive Microwave Soil Moisture Retrieval Algorithm". Sensors 20, nr 4 (24.02.2020): 1225. http://dx.doi.org/10.3390/s20041225.
Pełny tekst źródłaBurke, E. J., W. J. Shuttleworth i A. N. French. "Using vegetation indices for soil-moisture retrievals from passive microwave radiometry". Hydrology and Earth System Sciences 5, nr 4 (31.12.2001): 671–78. http://dx.doi.org/10.5194/hess-5-671-2001.
Pełny tekst źródłaTong, Cheng, Hongquan Wang, Ramata Magagi, Kalifa Goïta, Luyao Zhu, Mengying Yang i Jinsong Deng. "Soil Moisture Retrievals by Combining Passive Microwave and Optical Data". Remote Sensing 12, nr 19 (28.09.2020): 3173. http://dx.doi.org/10.3390/rs12193173.
Pełny tekst źródłaMoradizadeh, Mina, Prashant K. Srivastava i George P. Petropoulos. "Synergistic Evaluation of Passive Microwave and Optical/IR Data for Modelling Vegetation Transmissivity towards Improved Soil Moisture Retrieval". Sensors 22, nr 4 (10.02.2022): 1354. http://dx.doi.org/10.3390/s22041354.
Pełny tekst źródłaLee, K., Eleanor J. Burke, W. Shuttleworth i R. Harlow. "Influence of vegetation on SMOS mission retrievals". Hydrology and Earth System Sciences 6, nr 2 (30.04.2002): 153–66. http://dx.doi.org/10.5194/hess-6-153-2002.
Pełny tekst źródłaLindau, Ralf, i Clemens Simmer. "Derivation of a root zone soil moisture algorithm and its application to validate model data". Hydrology Research 36, nr 4-5 (1.08.2005): 335–48. http://dx.doi.org/10.2166/nh.2005.0026.
Pełny tekst źródłaGao, H., E. F. Wood, T. J. Jackson, M. Drusch i R. Bindlish. "Using TRMM/TMI to Retrieve Surface Soil Moisture over the Southern United States from 1998 to 2002". Journal of Hydrometeorology 7, nr 1 (1.02.2006): 23–38. http://dx.doi.org/10.1175/jhm473.1.
Pełny tekst źródłaGhilain, Nicolas, Alirio Arboleda, Okke Batelaan, Jonas Ardö, Isabel Trigo, Jose-Miguel Barrios i Francoise Gellens-Meulenberghs. "A New Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation". Remote Sensing 11, nr 17 (21.08.2019): 1968. http://dx.doi.org/10.3390/rs11171968.
Pełny tekst źródłaAnh, Vo Thi Lan, Doan Minh Chung, Ngo Tuan Ngoc i K. G. Kostov. "Research of Soil Moisture Retrieval Algorithms for Processing Radiometry Data". Communications in Physics 25, nr 3 (3.03.2016): 283. http://dx.doi.org/10.15625/0868-3166/25/3/5561.
Pełny tekst źródłaGao, Huilin, Eric F. Wood, Matthias Drusch i Matthew F. McCabe. "Copula-Derived Observation Operators for Assimilating TMI and AMSR-E Retrieved Soil Moisture into Land Surface Models". Journal of Hydrometeorology 8, nr 3 (1.06.2007): 413–29. http://dx.doi.org/10.1175/jhm570.1.
Pełny tekst źródłaRozprawy doktorskie na temat "Microwave Soil Moisture Retrieval Algorithm"
Talone, Marco. "Contributrion to the improvement of the soil moisture and ocean salinity (SMOS) sea surface salinity retrieval algorithm". Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/48633.
Pełny tekst źródłaChai, Soo See. "An artificial neural network approach for soil moisture retrieval using passive microwave data". Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/1416.
Pełny tekst źródłaLee, Khil-Ha. "Effect of vegetation characteristics on near soil moisture retrieval using microwave remote sensing technique". Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280028.
Pełny tekst źródłaSabia, Roberto. "Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity mission". Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/30542.
Pełny tekst źródłaSatellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans. Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information. A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009. Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified. The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes. In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features. The salinity retrieval issues whose influence is critical in the inversion procedure are: • Scene-dependent bias in the simulated measurements, • Radiometric sensitivity (thermal noise) and radiometric accuracy, • L-band forward modeling definition, • Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties, • Constraints in the cost function, especially on salinity term, and • Adequate spatio-temporal averaging. A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error. The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated. The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations. Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features. Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.
Rötzer, Kathrina [Verfasser]. "Statistical analysis and combination of active and passive microwave remote sensing methods for soil moisture retrieval / Kathrina Rötzer". Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1113688300/34.
Pełny tekst źródłaSat, Kumar *. "Soil Moisture Modelling, Retrieval From Microwave Remote Sensing And Assimilation In A Tropical Watershed". Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2508.
Pełny tekst źródłaCzęści książek na temat "Microwave Soil Moisture Retrieval Algorithm"
Ciabatta, Luca, Stefania Camici, Christian Massari, Paolo Filippucci, Sebastian Hahn, Wolfgang Wagner i Luca Brocca. "Soil Moisture and Precipitation: The SM2RAIN Algorithm for Rainfall Retrieval from Satellite Soil Moisture". W Advances in Global Change Research, 1013–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35798-6_27.
Pełny tekst źródłaLaachrate, Hibatoullah, Abdelhamid Fadil i Abdessamad Ghafiri. "Soil Moisture Retrieval Using Microwave Remote Sensing: Review of Techniques and Applications". W Geospatial Technology, 31–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24974-8_3.
Pełny tekst źródłaJahan, Nasreen, i Thian Yew Gan. "Soil Moisture Retrieval from Microwave (RADARSAT-2) and Optical Remote Sensing (MODIS) Data Using Artificial Intelligence Techniques". W Remote Sensing of the Terrestrial Water Cycle, 255–75. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118872086.ch16.
Pełny tekst źródłaWang, Hongquan. "Soil Moisture Retrieval from Microwave Remote Sensing Observations". W Soil Moisture. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.81476.
Pełny tekst źródłaMuñoz-Sabater, J., A. Al Bitar i L. Brocca. "Soil Moisture Retrievals Based on Active and Passive Microwave Data". W Satellite Soil Moisture Retrieval, 351–78. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803388-3.00018-8.
Pełny tekst źródłaMattar, C., A. Santamaría-Artigas, J. A. Sobrino i J. C. Jiménez-Muñoz. "Soil Moisture Retrieved From a Combined Optical and Passive Microwave Approach". W Satellite Soil Moisture Retrieval, 135–58. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803388-3.00007-3.
Pełny tekst źródłaAkbar, R., N. Das, D. Entekhabi i M. Moghaddam. "Active and Passive Microwave Remote Sensing Synergy for Soil Moisture Estimation". W Satellite Soil Moisture Retrieval, 187–207. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803388-3.00010-3.
Pełny tekst źródłaGupta, D. K., R. Prasad, P. K. Srivastava i T. Islam. "Nonparametric Model for the Retrieval of Soil Moisture by Microwave Remote Sensing". W Satellite Soil Moisture Retrieval, 159–68. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803388-3.00008-5.
Pełny tekst źródłaPiles, M., i N. Sánchez. "Spatial Downscaling of Passive Microwave Data With Visible-to-Infrared Information for High-Resolution Soil Moisture Mapping". W Satellite Soil Moisture Retrieval, 109–32. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803388-3.00006-1.
Pełny tekst źródłaSmith, Anne M. "Active Microwave Systems for Monitoring Drought Stress". W Monitoring and Predicting Agricultural Drought. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195162349.003.0015.
Pełny tekst źródłaStreszczenia konferencji na temat "Microwave Soil Moisture Retrieval Algorithm"
Mao, K., Z. Qin, M. Li, L. Zhang, B. Xu i L. Jiang. "An Algorithm for Surface Soil Moisture Retrieval Using the Microwave Polarization Difference Index". W 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.777.
Pełny tekst źródłaLiu, Jicheng, Xiwu Zhan i Thomas J. Jackson. "Soil moisture retrieval from WindSat using the single channel algorithm toward a blended global soil moisture product from multiple microwave sensors". W Optical Engineering + Applications, redaktorzy Mitchell D. Goldberg, Hal J. Bloom, Philip E. Ardanuy i Allen H. Huang. SPIE, 2008. http://dx.doi.org/10.1117/12.795065.
Pełny tekst źródłaKurum, Mehmet, Roger H. Lang, Peggy E. ONeill, Alicia Joseph, Tom Jackson i Mike Cosh. "Estimation of canopy attenuation for active/passive microwave soil moisture retrieval algorithms". W 2008 Microwave Radiometry and Remote Sensing of the Environment (MICRORAD 2008). IEEE, 2008. http://dx.doi.org/10.1109/micrad.2008.4579490.
Pełny tekst źródłaGao, Ying, Andreas Colliander, Mariko S. Burgin, Jeffrey P. Walker, Chunsik Chae, Emmanuel Dinnat, Michael H. Cosh, Todd Caldwell, Aaron Berg i Jose Martinez-Fernandez. "L-, C- and X-Band Passive Microwave Soil Moisture Retrieval Algorithm Parameterization Using in Situ Validation Sites". W IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8519001.
Pełny tekst źródłaZeng, Jiangyuan, Zhen Li, Quan Chen, Haiyun Bi i Ping Zhang. "A physically-based algorithm for surface soil moisture retrieval in the Tibet Plateau using passive microwave remote sensing". W IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6723382.
Pełny tekst źródłaSanti, E., S. Paloscia, S. Pettinato i G. Fontanelli. "A prototype ann based algorithm for the soil moisture retrieval from l- band in view of the incoming SMAP mission". W 2014 Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad). IEEE, 2014. http://dx.doi.org/10.1109/microrad.2014.6878897.
Pełny tekst źródłaBrogioni, M., G. Macelloni, S. Paloscia, P. Pampaloni, S. Pettinato i E. Santi. "Two operational algorithms for the retrieval of snow depth and soil moisture content from AMSR-E data". W 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010). IEEE, 2010. http://dx.doi.org/10.1109/microrad.2010.5559586.
Pełny tekst źródłaFu, Haoyang, Lingjia Gu i Ruizhi Ren. "Salinity and soil moisture retrieval algorithms in western Jilin Province of China using passive microwave remote sensing data". W SPIE Optical Engineering + Applications, redaktorzy Wei Gao, Ni-Bin Chang i Jinnian Wang. SPIE, 2015. http://dx.doi.org/10.1117/12.2186282.
Pełny tekst źródłaLu, Hui, Toshio Koike, Tetsu Ohta, David Ndegwa Kuria, Hiroyuki Tsutsui, Tobias Graf, Hideyuki Fujii i Katsunori Tamagawa. "Development of a soil moisture retrieval algorithm for spaceborne passive microwave radiometers and its application to AMSR-E and SSM/I". W 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4423014.
Pełny tekst źródłaO'Neill, Peggy, Roger Lang, Mehmet Kurum, Alicia Joseph, Michael Cosh i Thomas Jackson. "Microwave Soil Moisture Retrieval Under Trees". W IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4778786.
Pełny tekst źródła