Rozprawy doktorskie na temat „Microwave Satellite Soil Moisture”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Microwave Satellite Soil Moisture”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Piles, Guillem Maria. "Multiscale soil moisture retrievals from microwave remote sensing observations". Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77910.
Pełny tekst źródłaSoil moisture is a key state variable of the Earth's system; it is the main variable that links the Earth's water, energy and carbon cycles. Accurate observations of the Earth's changing soil moisture are needed to achieve sustainable land and water management, and to enhance weather and climate forecasting skill, flood prediction and drought monitoring. This Thesis focuses on measuring the Earth's surface soil moisture from space at global and regional scales. Theoretical and experimental studies have proven that L-band passive remote sensing is optimal for soil moisture sensing due to its all-weather capabilities and the direct relationship between soil emissivity and soil water content under most vegetation covers. However, achieving a temporal and spatial resolution that could satisfy land applications has been a challenge to passive microwave remote sensing in the last decades, since real aperture radiometers would need a large rotating antenna, which is difficult to implement on a spacecraft. Currently, there are three main approaches to solving this problem: (i) the use of an L-band synthetic aperture radiometer, which is the solution implemented in the ESA Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009; (ii) the use of a large lightweight radiometer and a radar operating at L-band, which is the solution adopted by the NASA Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014; (iii) the development of pixel disaggregation techniques that could enhance the spatial resolution of the radiometric observations. The first part of this work focuses on the analysis of the SMOS soil moisture inversion algorithm, which is crucial to retrieve accurate soil moisture estimations from SMOS measurements. Different retrieval configurations have been examined using simulated SMOS data, considering (i) the option of adding a priori information from parameters dominating the land emission at L-band —soil moisture, roughness, and temperature, vegetation albedo and opacity— with different associated uncertainties and (ii) the use of vertical and horizontal polarizations separately, or the first Stokes parameter. An optimal retrieval configuration for SMOS is suggested. The spatial resolution of SMOS and SMAP radiometers (~ 40-50 km) is adequate for global applications, but is a limiting factor to its application in regional studies, where a resolution of 1-10 km is needed. The second part of this Thesis contains three novel downscaling approaches for SMOS and SMAP: • A deconvolution scheme for the improvement of the spatial resolution of SMOS observations has been developed, and results of its application to simulated SMOS data and airborne field experimental data show that it is feasible to improve the product of the spatial resolution and the radiometric sensitivity of the observations by 49% over land pixels and by 30% over sea pixels. • A downscaling algorithm for improving the spatial resolution of SMOS-derived soil moisture estimates using higher resolution MODIS visible/infrared data is presented. Results of its application to some of the first SMOS images show the spatial variability of SMOS-derived soil moisture observations is effectively captured at the spatial resolutions of 32, 16, and 8 km. • A change detection approach for combining SMAP radar and radiometer observations into a 10 km soil moisture product has been developed and validated using SMAP-like observations and airborne field experimental data. This work has been developed within the preparatory activities of SMOS and SMAP, the two first-ever satellites dedicated to monitoring the temporal and spatial variation on the Earth's soil moisture. The results presented contribute to get the most out of these vital observations, that will further our understanding of the Earth's water cycle, and will lead to a better water resources management.
Dall'Amico, Johanna Therese. "Multiscale analysis of soil moisture using satellite and aircraft microwave remote sensing, in situ measurements and numerical modelling". Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-146263.
Pełny tekst źródłaDall'Amico, Johanna Therese [Verfasser], i Wolfram [Akademischer Betreuer] Mauser. "Multiscale analysis of soil moisture using satellite and aircraft microwave remote sensing, in situ measurements and numerical modelling / Johanna Therese dall'Amico. Betreuer: Wolfram Mauser". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1025047079/34.
Pełny tekst źródłaWalden, Aleksi. "SMOS satellite hardware anomaly prediction methods based on Earth radiation environment data sets". Thesis, Luleå tekniska universitet, Rymdteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59789.
Pełny tekst źródłaKolassa, Jana. "Soil moisture retrieval from multi-instrument satellite observations". Paris 6, 2013. http://www.theses.fr/2013PA066392.
Pełny tekst źródłaIn this thesis, a neural network based retrieval algorithm has been developed to compute surface soil moisture from a combination of microwave, infrared and visible satellite obser- vations. A global estimate of monthly mean soil moisture values has been computed for the period 1993-2000 and is provided on an equal-area grid with an equatorial resolution of 0. 25◦. This soil moisture estimate has been evaluated against modelled, remotely sensed and in situ observations and was found to perform well on different spatial and temporal scales. An information content showed that each of the various satellite observations con- tributes information about a different soil moisture variation, with the active microwave data being more sensitive to the temporal evolution and the thermal infrared data better capturing the spatial patterns. Furthermore, a synergy analysis revealed that the combina- tion of all observations permits a reduction of the retrieval uncertainty by more than 18% and that the neural network methodology optimally exploits the synergy of observations compared to other approaches. A joint analysis of various remotely sensed datasets of ter- restrial water cycle components demonstrated the coherence of the retrieved soil moisture with other retrieval products and with global hydrological processes. This underlined its potential to be used for observation-based studies of the terrestrial water cycle. Finally, it has been shown that the proposed neural network methodology also provides an effective tool to evaluate Earth System Models on both a variable and a process basis
Soriano, Melissa. "Estimation of soil moisture in the southern united states in 2003 using multi-satellite remote sensing measurements". Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3361.
Pełny tekst źródłaVita: p. 65. Thesis director: John Qu. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth System Science. Title from PDF t.p. (viewed Jan. 11, 2009). Includes bibliographical references (p. 59-64). Also issued in print.
Manchikanti, Ujwala. "Evaluation of microwave sensor for soil moisture content determination". [Ames, Iowa : Iowa State University], 2007.
Znajdź pełny tekst źródłaRamnath, Vinod. "Estimation of soil moisture using active microwave remote sensing". Master's thesis, Mississippi State : Mississippi State University, 2003.
Znajdź pełny tekst źródłaDas, Narendra N. "Soil moisture modeling and scaling using passive microwave remote sensing". Texas A&M University, 2005. http://hdl.handle.net/1969.1/4881.
Pełny tekst źródłaBaban, Serwan M. J. "The derivations of hydrological variables (including soil moisture) from satellite imagery". Thesis, University of East Anglia, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292298.
Pełny tekst źródłaLindell, David Brian. "Arctic Sea Ice Classification and Soil Moisture Estimation Using Microwave Sensors". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6153.
Pełny tekst źródłaHaas, Jan. "Soil moisture modelling using TWI and satellite imagery in the Stockholm region". Thesis, KTH, Geoinformatik och Geodesi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-49704.
Pełny tekst źródłaSrivastava, Prashant K. "Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.617590.
Pełny tekst źródłaYilmaz, Musa. "Active Microwave Remote Sensing Of Soil Moisture: A Case Study In Kurukavak Basin". Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12610309/index.pdf.
Pełny tekst źródła#8211
soil roughness relationship and soil roughness maps of the study area are obtained. Then another relationship is built between radar backscatter and the three governing surface parameters: local incidence angle, soil moisture and soil roughness, which is later used in the soil moisture estimation methods. Depending on land use and vegetation cover condition, surface soil moisture maps of the catchment are produced by Backscatter Correction Factors, Water Cloud Model and Basin Indexes methods. In the last part of the study, the soil moisture maps of the basin are input to a semi-distributed hydrological model, HEC-HMS, as the initial soil moisture condition of a flood event simulation. In order to investigate the contribution of distributed initial soil moisture data on model outputs, simulation of the same flood event is also performed with the lumped initial soil moisture condition. Finally, a comparison between both the distributed and lumped model simulation outputs and with the observed data is carried out.
Champagne, Catherine. "Evaluation of Agricultural Soil Moisture Extremes in Canada Using Passive Microwave Remote Sensing". Thesis, Taylor and Francis, Elsevier Science, 2010. http://hdl.handle.net/10214/2918.
Pełny tekst źródłaNational Science and Engineering Research Council, Agriculture and Agri-Food Canada, Canadian Space Agency
Chai, Soo See. "An artificial neural network approach for soil moisture retrieval using passive microwave data". Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/1416.
Pełny tekst źródłaTimoncini, Marta. "Detection of soil moisture under changing vegetation cover using synthetic aperture radar satellite imagery". Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430133.
Pełny tekst źródłaZhuo, Lu. "Advances in enhanced compatibility between satellite remote sensing of soil moisture and hydrological modelling". Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702218.
Pełny tekst źródłaLee, Khil-Ha. "Effect of vegetation characteristics on near soil moisture retrieval using microwave remote sensing technique". Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280028.
Pełny tekst źródłaAl-Shrafany, Deleen Mohammed Saleh. "Soil moisture estimation using satellite remote sensing and numerical weather prediction model for hydrological applications". Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.574260.
Pełny tekst źródłaWilker, Henning. "Soil moisture analysis based on microwave brightness temperatures a study on systematic and random errors /". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=984635505.
Pełny tekst źródłaMöller, Jason John. "The use of remote sensing for soil moisture estimation using downscaling and soil water balance modelling in Malmesbury and the Riebeek Valley". Thesis, University of the Western Cape, 2014. http://hdl.handle.net/11394/4105.
Pełny tekst źródłaSoil moisture forms an integral part of the hydrological cycle and exerts considerable influence on hydrological processes at or near the earth’s surface. Knowledge of soil moisture is important for planning and decision-making in the agricultural sector, land and water conservation and flood warning. Point measurements of soil moisture, although highly accurate, are time consuming, costly and do not provide an accurate indication of the soil moisture variation over time and space as soil moisture has a high degree of spatial and temporal variability. The spatial variability of soil moisture is due to the heterogeneity of soil water holding properties, the influence of plants, and land uses. The downscaling of satellite microwave soil moisture estimates and soil water balance modelling was investigated at six transects in the semi-arid, Western Cape Province of South Africa, as alternatives to in situ soil measurements. It was found that microwave soil moisture estimates compared well to in situ measurements at the six transects (study sites), with coefficient of determination (r2) values greater than 0.7 and root mean square error (RMSE) values less than 1.5%. Downscaling using the universal triangle method, performed well at 4 of the 6 transects, with r2 values great than 0.65 and low to moderate RMSE values (0.5-12%). Soil water balance modelling similarly performed well in comparison with in situ measurements at 4 of the transects with regards to r2 values (>0.6) but had moderate to high RMSE (4.5-19%). Poor downscaling results were attributed to fine scale (within 1 km) surface heterogeneity while poor model performance was attributed to soil hydrological and rainfall heterogeneity within the study areas.
Wang, Yawei [Verfasser], i Ralf [Akademischer Betreuer] Ludwig. "Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data / Yawei Wang ; Betreuer: Ralf Ludwig". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2021. http://d-nb.info/1236544226/34.
Pełny tekst źródłaAl-Yaari, Amen Mohammed. "Global-scale evaluation of a hydrological variable measured from space : SMOS satellite remote sensing soil moisture products". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066678/document.
Pełny tekst źródłaSoil moisture (SM) plays a key role in meteorology, hydrology, and ecology as it controls the evolution of various hydrological and energy balance processes. The community of scientists involved in the field of microwave remote sensing has made considerable efforts to build accurate estimates of surface SM (SSM), and global SSM datasets derived from active and passive microwave instruments have recently become available. Among them, SMOS (Soil Moisture and Ocean Salinity), launched in 2009, was the first ever passive satellite specifically designed to measure the SSM, at L-band (1.4 GHz), at the global scale. Validation of the SMOS SSM datasets over different climatic regions and environmental conditions is extremely important and a necessary step before they can be used. A better knowledge of the skill and uncertainties of the SSM retrievals will help not only to improve the individual products, but also to optimize the fusion schemes required to create long-term multi-sensor products, like the essential climate variable (ECV) SSM product generated within the European Space Agency’s (ESA's) Climate Change Initiative (CCI) program. After the introductory Chapters I to III, this dissertation consists of three main parts. Chap. IV of the dissertation evaluates the passive SMOS level 3 (SMOSL3) SSM products at L-band against the passive AMSR-E SSM at C-band by comparing them with a Land Data Assimilation System estimates (SM-DAS-2) produced by the European Centre for Medium Range Weather Forecasts (ECMWF). This was achieved over the common period 2010-2011 between SMOS and AMSR-E, using classical metrics (Correlation, RMSD, and Bias). In parallel, Chap. V of the dissertation evaluates the passive SMOSL3 products against the active ASCAT SSM at C-band by comparing them with land surface model simulations (MERRA-Land) using classical metrics, advanced statistical methods (triple collocation), and the Hovmöller diagram over the period 2010-2012. These two evaluations indicated that vegetation density (parameterized here by the leaf area index LAI) is a key factor to interpret the consistency between SMOS and the other remotely sensed products. This effect of the vegetation has been quantified for the first time at the global scale for the three microwave sensors. These two chapters also showed that both SMOS and ASCAT (AMSR-E) had complementary performances and, thus, have a potential for datasets fusion into long-term SSM records. In Chap. VI of the dissertation, with the general purpose to extend back the SMOSL3 SSM time series and to produce an homogeneous SM product over 2003-2014 based on SMOS and AMSR-E, we investigated the use of a multiple linear regression model based on bi-polarization (horizontal and vertical) brightness temperatures (TB) observations obtained from AMSR-E (2003 - 2011). The regression coefficients were calibrated using SMOSL3 SSM as a reference over the 2010-2011 period. The resulting merged SSM dataset was evaluated against an AMSR-E SSM retrievals and modelled SSM products (MERRA-Land) over 2007-2009. These first results show that the multi-linear regression method is a robust and simple approach to produce a realistic SSM product in terms of temporal variation and absolute values. In conclusion, this PhD showed that the potential synergy between the passive (AMSR-E and SMOS) and active (ASCAT) microwave systems at global scale is very promising for the development of improved, long-term SSM time series at global scale, such as those pursued by the ESA’s CCI program. It also provides new ideas on the way to merge the different SSM datasets with the aim of producing the CCI (phase 2) long-term series (a coherent "SMOS-AMSR-E" SSM time series for the period 2003 -2014), that will be evaluated further in the framework of on-going ESA projects
AMBAW, GASHAW METEKE. "Satellite based remote sensing of soil moisture for drought detection and monitoring in the Horn of Africa". Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2507436.
Pełny tekst źródłaTalone, Marco. "Contributrion to the improvement of the soil moisture and ocean salinity (SMOS) sea surface salinity retrieval algorithm". Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/48633.
Pełny tekst źródłaSabia, Roberto. "Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity mission". Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/30542.
Pełny tekst źródłaSatellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans. Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information. A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009. Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified. The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes. In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features. The salinity retrieval issues whose influence is critical in the inversion procedure are: • Scene-dependent bias in the simulated measurements, • Radiometric sensitivity (thermal noise) and radiometric accuracy, • L-band forward modeling definition, • Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties, • Constraints in the cost function, especially on salinity term, and • Adequate spatio-temporal averaging. A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error. The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated. The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations. Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features. Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.
Rötzer, Kathrina [Verfasser]. "Statistical analysis and combination of active and passive microwave remote sensing methods for soil moisture retrieval / Kathrina Rötzer". Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1113688300/34.
Pełny tekst źródłaFlores, Alejandro Nicolas. "Hillslope-scale soil moisture estimation with a physically-based ecohydrology model and L-band microwave remote sensing observations from space". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/47734.
Pełny tekst źródłaIncludes bibliographical references (p. 469-488).
Soil moisture is a critical hydrosphere state variable that links the global water, energy, and carbon cycles. Knowledge of soil moisture at scales of individual hillslopes (10's to 100's of meters) is critical to advancing applications such as landslide prediction, rainfall-runoff modeling, and wildland fire fuel load assessment. This thesis develops a data assimilation framework that employs the ensemble Kalman Filter (EnKF) to estimate the spatial distribution of soil moisture at hillslope scales by combining uncertain model estimates with noisy active and passive L-band microwave observations. Uncertainty in the modeled soil moisture state is estimated through Monte Carlo simulations with an existing spatially distributed ecohydrology model. Application of the EnKF to estimate hillslope-scale soil moisture in a watershed critically depends on: (1) identification of factors contributing to uncertainty in soil moisture, (2) adequate representation of the sources of uncertainty in soil moisture, and (3) formulation of an observing system to estimate the geophysically observable quantities based on the modeled soil moisture. Uncertainty in the modeled soil moisture distribution arises principally from uncertainty in the hydrometeorological forcings and imperfect knowledge of the soil parameters required as input to the model. Three stochastic models are used in combination to simulate uncertain hourly hydrometeorological forcings for the model. Soil parameter sets are generated using a stochastic approach that samples low probability but potentially high consequence parameter values and preserves correlation among the parameters. The observing system recognizes the role of the model in organizing the factors effecting emission and reflection of L-band microwave energy and emphasizes the role of topography in determining the satellite viewing geometry at hillslope scales.
(cont.) Experiments in which true soil moisture conditions were simulated by the model and used to produce synthetic observations at spatial scales significantly coarser than the model resolution reveal that sequential assimilation of observations improves the hillslope-scale near-surface moisture estimate. Results suggest that the data assimilation framework is an effective means of disaggregating coarse-scale observations according to the model physics represented by the ecohydrology model. The thesis concludes with a discussion of contributions, implications, and future directions of this work.
by Alejandro Nicolas Flores.
Ph.D.
Kong, Xin. "Near-surface soil moisture retrieval at field and regional scales in UK : coupling of field measurements, a dynamic model and satellite imagery". Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429801.
Pełny tekst źródłaRamos, Pérez Isaac. "Pau-synthetic aperture: a new instrument to test potential improvements for future interferometric radiometers". Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/80600.
Pełny tekst źródłaGao, Qi. "Estimation of water resources on continental surfaces by multi-sensor microwave remote sensing". Doctoral thesis, Universitat Ramon Llull, 2019. http://hdl.handle.net/10803/667771.
Pełny tekst źródłaLa estimación de los recursos hídricos de las superficies continentales a escala regional y global es fundamental para una buena gestión de los recursos hídricos. Esta estimación cubre una amplia gama de temas y campos, incluyendo la caracterización de los suelos y de los recursos hídricos a escala de cuenca, la modelización hidrológica y la predicción y la cartografía de inundaciones. En este contexto, la caracterización de los estados de la superficie continental, para obtener mejores parámetros de entrada para los modelos hidrológicos, es esencial para mejorar la precisión en la simulación de caudales, sequías e inundaciones. La estimación del contenido de agua en el sistema, incluidas las diferentes masas de agua y el agua libre en el suelo, es especialmente necesaria para una descripción precisa de los procesos hidrológicos y, en general, del ciclo del agua en las superficies continentales. Una caracterización precisa de los procesos hidrológicos requiere no descuidar las intervenciones humanas. El hombre influye en el ciclo del agua, principalmente mediante el riego y la construcción de embalses, lo que se debe cuantificar correctamente. El objetivo de la tesis es la mejora de la estimación remota de los recursos hídricos, incluyendo la cuantificación de los factores humanos, mediante el uso de varios sensores lanzados recientemente, aprovechando recientes desarrollos en la tecnología de teledetección. Con la llegada de las constelaciones Sentinel (Sentinel-1, 2, 3), disponemos de mejores herramientas para estimar los recursos hídricos, incluyendo los impactos humanos, con una mayor precisión y cobertura. Este trabajo de tesis consta principalmente en dos ejes de investigación donde se estiman las intervenciones humanas en el ciclo hidrológico: la cartografía del riego (como aplicación en humedad del suelo), y el forzamiento de embalses en simulaciones hidrológicas (como aplicación de la altimetría). En relación al primer eje, se estima la humedad del suelo a partir del análisis estadístico de los datos SAR de Sentinel-1. Se desarrollan dos metodologías para obtener la humedad del suelo con una resolución espacial de 100 m basándose en la interpretación de los datos de Sentinel-1 obtenidas con la polarización VV (vertical-vertical), que se combina con datos ópticas Sentinel-2 para el análisis de los efectos de la vegetación. Como aplicación de la humedad del suelo, se cartografía el riego en diversas condiciones meteorológicas, y con una alta resolución espacial y temporal. Se propone una metodología para la cartografía del riego mediante datos SAR obtenidos en polarizaciones VV (vertical-vertical) y VH (vertical-horizontal). A partir de la serie temporal Sentinel-1, se analizan diferentes estadísticas y métricas, incluyendo el valor medio, la varianza de la señal, la longitud de la correlación y la dimensión fractal, a partir de los cuales se clasifican los árboles irrigados, los cultivos irrigados y los cultivos no irrigados. En el segundo eje, se estima el nivel de los embalses a partir de los datos de altimetría de Sentinel-3, con el altímetro SAR (SRAL), basándose en diferentes algoritmos para mejorar la precisión. Este estudio presenta tres algoritmos especializados o retrackers destinados a obtener el nivel de la superficie de los cuerpos de agua estudiados, minimizando la contaminación de las formas de onda debido al suelo que los rodea. Se compara el rendimiento del método propuesto de selección de la porción de onda con tres retrackers, es decir, un retracker de umbral, el retracker del centro de gravedad (OCOG) y un retracker de base física de dos pasos. Se obtienen series temporales del nivel de la lámina de agua de embalses situados en la cuenca del río Ebro (España). Como aplicación, las series de nivel de los embalses obtenidas se utilizan para forzar los embalses en simulaciones hidrológicas.
The estimation of the water resources of the continental surfaces at a regional and global scale is fundamental for good water resources management. This estimation covers a wide range of topics and fields, including the characterisation of soils and water resources at the basin scale, hydrological modelling and flood prediction and mapping. In this context, the characterisation of the states of the continental surface, to obtain better input parameters for hydrological models, is essential to improve the precision in the simulation of flows, droughts, and floods. The estimation of the water content in the system, including the different water bodies and the free water in the soil, is especially necessary for a precise description of the hydrological processes and, in general, of the water cycle on the continental surfaces. To better characterise hydrological processes, human interventions cannot be neglected. Humans influence the water cycle, mainly through irrigation and the construction of reservoirs, which must be correctly quantified. The objective of the thesis is the improvement of the remote estimation of water resources, including the quantification of human factors, using several sensors recently launched, taking advantage of recent developments in remote sensing technology. With the arrival of the Sentinel constellations (Sentinel-1, 2, 3), we have better tools to estimate water resources, including human impacts, with greater precision and coverage. This thesis consists mainly of two parts where human interventions in the water cycle are considered: irrigation cartography (as an application of soil moisture), and the forcing of reservoirs in hydrological simulations (as an application of altimetry). Firstly, soil moisture is estimated from the statistical analysis of Sentinel-1 SAR data. Two methodologies are developed to obtain soil moisture with a spatial resolution of 100 m based on the interpretation of Sentinel-1 data collected with the VV polarization (vertical-vertical), which is combined with optical data of Sentinel-2 for the analysis of the effects of vegetation. Secondly, irrigation is mapped under various meteorological conditions, including high spatial and temporal resolution. A methodology for irrigation mapping is proposed using SAR data obtained in VV (vertical-vertical) and VH (vertical-horizontal) polarizations. With Sentinel-1 time series, different statistics and metrics are analysed, including the mean value, the variance of the signal, the correlation length and the fractal dimension, based on which the classification of irrigated trees, irrigated crops, and non-irrigated crops are derived. Finally, the level of the reservoirs is estimated from the Sentinel-3 altimetry data, with the SAR altimeter (SRAL), based on different algorithms to improve the accuracy. This study presents three specialised algorithms or retrackers designed to obtain the level of the surface of the studied inland bodies of water, minimising the contamination of the waveforms due to the surrounding soil. The performance of the selection method of the proposed wave portion is compared with three retrackers, that is, the centre of gravity retracker (OCOG) and the two-step physical-based retracker. Temporal series of the water level of reservoirs located in the basin of the Ebro River (Spain) are obtained. As an application, the level series of the reservoirs obtained are used to force the reservoirs in hydrological simulations.
L'estimation et le suivi des ressources en eau des surfaces continentales aux niveaux régional et global est essentielle pour la gestion du bilan hydrique, particulièrement dans le contexte des changements climatiques et anthropiques. Ils couvrent un large éventail de thèmes et de domaines, incluant la caractérisation des ressources en eau à l'échelle du bassin, la modélisation hydrologique ainsi que la prévision et la cartographie des inondations. Dans ce contexte, la caractérisation des états de surface, en tant que paramètres d’entrée dans les modèles hydrologiques, est essentielle pour obtenir une meilleure précision de la simulation, qui est liée à la précision prévisionnelle des débits des cours d’eau et le suivi des sécheresses et des inondations. L'estimation de la teneur en eau des surfaces continentales, incluant l’état hydrique du sol et les niveaux des surfaces couvertes d’eau, est particulièrement nécessaire pour une description précise des processus hydrologiques et plus généralement du cycle de l'eau sur les surfaces continentales. Afin de mieux comprendre les processus hydrologiques, l'influence humaine (l’effet anthropique) sur le cycle de l'eau nécessite une évaluation fine. Elle est particulièrement liée à la gestion de l’irrigation et la construction de barrages. L'objectif de la thèse était d'améliorer l'estimation des ressources en eau et une meilleure caractérisation des interventions anthropiques à travers l'utilisation de nouveaux capteurs satellitaires multi-configurations du programme européen Copernicus. Avec le développement de la technologie de télédétection spatiale, et plus particulièrement avec l’arrivée des constellations Sentinel (Sentinel-1, 2, 3) à haute résolution spatiale et temporelle, il existe un meilleur outil pour estimer les états des surfaces continentales. Ce travail de thèse comprend principalement deux priorités liées à des interventions humaines dans le cycle hydrologique:la cartographie de l'irrigation en tant que action humaine liée directement à l'humidité du sol et le forçage des barrages dans un modèle de simulation de rivière en tant qu'application liée à l’estimation du niveau de l'eau libre. Un premier axe de recherche a été basé sur une analyse statistique des données SAR Sentinel-1 pour caractériser l’état hydrique du sol. Deux méthodes ont été développées pour estimer ce paramètre avec une résolution spatiale de 100 m. Elles sont basées sur des approches de détection de changement à partir des données Sentinel-1 acquises en polarisation VV (verticale-verticale), combinées aux données optiques Sentinel-2 pour corriger les effets de la végétation. L’application consistait à cartographier l'irrigation, avec des résolutions spatiale et temporelle élevées. Une méthodologie de cartographie de l'irrigation utilisant des données SAR Sentinel-1 a été proposée. Elle estbasée sur les acquisitions en polarisations VV (vertical-vertical) et VH (vertical-horizontal). A partir de la série temporelle des mesures Sentinel-1, des paramètres statistiques tel que la valeur moyenne, la variance du signal, la longueur de corrélation temporelle et la dimension fractale, sont analysées, en fonction du type de culture; cultures annuelles irriguées, arbres irrigués et cultures pluviales. Des classifications supervisées utilisant les approches Random Forest et SVM sont testées. En deuxième axe, l'estimation de la hauteur de la surface de l'eau à partir des données altimétriques de Sentinel-3 avec l’altimètre SAR (SRAL) a été réalisée à l'aide de différents algorithmes afin d'améliorer la précision sur des petites surfaces. Cette étude présente trois algorithmes spécialisés (ou retrackers) dédiées à la minimisation de la contamination des sols par les formes d’ondes permettant de récupérer les niveaux d’eau à partir de données altimétriques SAR sur des masses d’eaux intérieures. Les performances de la méthode de sélection de portion de forme d'onde proposée avec trois retrackers, à savoir, le retracker à seuil, le retracker à centre de gravité décalé (OCOG) et le retracker à base physique à 2 étapes, sont comparées. Des séries chronologiques de niveaux d'eau sont extraites pour les masses d'eau du bassin de l'Èbre (Espagne). Une application des produits altimétriques est proposée. Le produit de niveau d’eau a été utilisé comme paramètre d’entrée pour analyser l’effet tampon des barrages dans les simulations de débits fluviaux.
Perez, Luis G. "Development of a Methodology that Couples Satellite Remote Sensing Measurements to Spatial-Temporal Distribution of Soil Moisture in the Vadose Zone of the Everglades National Park". FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1663.
Pełny tekst źródłaFatras, Christophe. "Etude de la rétrodiffusion altimétrique pour la caractérisation des surfaces et de l'humidité des sols en Afrique de l'Ouest". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30106/document.
Pełny tekst źródłaThe radar altimetry interferometry satellite SWOT, which is to be launched in 2020, should provide for the first time a global coverage of a close-to-nadir radar altimeter in a few days using the Ka-band. Yet, the use of such a frequency band for continental hydrology is still poorly documented. In particular, the contrast of the backscattering coefficient over soils and over water bodies for nadir and close-to-nadir angles is a major issue. This is the reason for this work. First, the study of the backscattering coefficients from C- and Ku- band altimeters and scatterometers over West Africa has shown that there is a link between the surface soil moistureand the backscattering coefficient. In semi-arid regions, this link is seen through a rise of the backscattering coefficients during the rainy season compared to the dry season. The analysis with ancillary data such as the surface soil moisture and the precipitation estimations has also shown that nadir-looking radars detect more precisely the changes in surface soil moisture compared to side-looking radars. Still with the purpose to better understand the Ka-band surface scattering, poorly documented, two measurement campaigns were led, on the one hand over water surface with controlled roughness, on the other hand over bare soils with monitored roughness and surface soil moisture. In parallel, an altimetry backscattering simulation program has been developed to analyze the effect of a low number of variables on realistic grounds, with the aim of simulating the backscattering coefficient variations. These measurements and simulations were then compared with time series from the satellite altimeter AltiKa, which has been launched in 2013 and works at Ka-band, over different sites representaing the bioclimatic areas of West Africa. It led to a high sensitivity of the Ka-band to changes in the surface soil moisture. It has also been shown that backscattering coefficients at nadir-looking angle from AltiKa over grounds and over water bodies can be similar
Gibon, François. "Etude de la dynamique spatio-temporelle de l'humidité du sol : Applications du satellite SMOS au suivi de rendement agricole en Afrique de l'Ouest et à la correction des produits satellitaires de pluies". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAU013/document.
Pełny tekst źródłaSoil moisture was declared Essential Climate Variable (ECV) in 2010 by the European Space Agency (ESA) in support of the work of the Intergovernmental Panel on Climate Change (IPCC). In vulnerable areas such as West Africa (poorly irrigated and subsistence agriculture, extreme temperatures and high variability of rainfall), the added value of informations on soil moisture is important, especially in a changing climate. The first part of this thesis concerns the representation of root-zone soil moisture on a large scale using the triptych in-situ measurements / remote sensing / modeling. These 3 methods each have limitations: (i) the low density of in-situ networks (3 measurement sites throughout West Africa), (ii) SMOS estimates only at the surface (0-5 cm) and (iii) the uncertainties of the real-time precipitation forcing used in surface models. In order to reduce these limitations, an assimilation method (particle filter) of SMOS data has been implemented in an empirical surface model (API) and compared to AMMA-CATCH in-situ measurements. The results show an improvement of the humidities modeled after assimilation. The second part concerns the impact of soil moisture variations on millet yields. A statistical relationship was first determined from yield data measured in 10 villages around Niamey. The results show that the 20-day soil moisture anomalies at the beginning of July and the end of August - mid September (reproductive period and grain filling period), at a depth of about 30 cm, explain the variations in yield measured at R2=0.77. This relationship was then applied to the Nigerien scale from FAO yield data and in-depth moisture maps developed in the first part of the thesis. The results show a correlation at R2=0.62 over the years 1998-2015. Then, the method was apply to 3 other sahelian countries, showing a agreement of 0.77. The last part of this work concerns the exploitation of the residuals of the assimilation scheme in order to reduce the uncertainties on the precipitations. The satellite precipitation products CMORPH, TRMM and PERSIANN, in their real-time version, were compared to rain gauges before and after assimilation. The result of this study shows a marked improvement in the estimated precipitations intensities. The method was then applied to a precipitation product used at the AGRHYMET regional center for agricultural monitoring, the TAMSAT product.This thesis work has led to further research into the potential of satellite moisture data for agronomic applications. The perspectives of this work mainly concern: (i) the use of other sensors (SMAP, ASCAT, AMSR) to increase the frequency of the observations of humidity in the assimilation, (ii) on methods of disaggregation of the coefficients for the correction of precipitation at higher spatial resolution and (iii) the use of multispectral data (vegetation indices, soil temperature, ...) for a better monitoring of yields
Couturier, Stéphane. "Evaluation des erreurs de cartes de végétation avec une approche par ensembles flous et avec la simulation d'images satellite". Toulouse 3, 2007. https://tel.archives-ouvertes.fr/tel-00193828.
Pełny tekst źródłaIn highly bio-diverse regions, characterized by dynamic landscapes, detailed land use and land cover maps are commonly generated through the classification of remote sensing imagery. Yet, frameworks for the estimation of errors on maps have focused on mainly temperate zones, in highly industrialized countries. We propose a new method for the accuracy assessment of maps and a new method for the systematic estimation of ambiguities on satellite imagery. The first method comprises a novel sampling scheme and a fuzzy sets based framework whereby degrees of positional and thematic tolerance are user defined. The second method is based on structural and optical measurements and the simulation of satellite imagery with the Discrete Anisotropic Radiative Transfer (DART) model. The first method was successfully tested on the Mexican National Forest Inventory map of year 2000 and the second method was successfully tested on real IKONOS imagery of forest cover types on flat and rugged terrain
Teixeira, Raul Fritz Bechtel. "InferÃncia do Estado Geral da Umidade Superficial do Solo Pelo Ãndice de Seca Temperatura-VegetaÃÃo e por Imagens do SatÃlite NOAA-17: AplicaÃÃes no SemiÃrido do CearÃ". Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5770.
Pełny tekst źródłaA observaÃÃo da superfÃcie terrestre por meio de satÃlites em Ãrbita de nosso planeta tornou-se corriqueira no mundo contemporÃneo. As inferÃncias de variÃveis ambientais diversas feitas a partir de imagens e dados fornecidos por satÃlites cada vez mais aumentam em qualidade e aplicabilidade de maneira que um nÃmero crescente de hidrologistas, meteorologistas, climatologistas e outros profissionais e leigos em geral fazem uso intensivo delas em estudos e pesquisas, em polÃticas governamentais ou na tomada de decisÃo. Uma dessas variÃveis à a umidade superficial do solo, que representa uma importante componente do ciclo hidrolÃgico terrestre, essencial em vÃrios processos naturais ambientais e cujo conhecimento à importante no gerenciamento dos recursos hÃdricos e terrestres, gerenciamento agrÃcola e na modelagem do meio ambiente e agrÃcola. As informaÃÃes derivadas de satÃlites, apesar de ainda apresentarem algumas limitaÃÃes tÃcnicas, podem facilitar bastante o monitoramento ambiental ao se tornarem, muitas vezes, mais Ãgeis e mais econÃmicas do que mediÃÃes locais in situ. Em paÃses em desenvolvimento e de limitados recursos financeiros, tais como o nosso, a informaÃÃo por satÃlites cresce em valor. No Estado do CearÃ, isso desponta ainda mais em virtude das suas dificuldades econÃmicas e sociais. Em vista disso, à proposta, neste trabalho, a aplicaÃÃo nesse estado do Nordeste de um mÃtodo de inferÃncia, por satÃlite, do estado geral da umidade superficial do solo expresso pelo Ãndice de Seca Temperatura-VegetaÃÃo (ISTV), que à indicativo do grau da umidade, estando a ela relacionado. Esse Ãndice à obtido a partir da combinaÃÃo de informaÃÃes da Temperatura da SuperfÃcie Continental (TSC) e do Ãndice de VegetaÃÃo por DiferenÃa Normalizada (IVDN), inferidos por meio de imagens no visÃvel e no infravermelho que podem ser fornecidas por satÃlites meteorolÃgicos operacionais, de Ãrbita polar, tais como os da sÃrie NOAA (National Oceanic and Atmospheric Administration, EUA). No mÃtodo, foi escolhido, da literatura cientÃfica, um algoritmo de cÃlculo da TSC que apresenta certa facilidade de uso, sendo diretamente dependente da FraÃÃo de Cobertura de VegetaÃÃo (FCV) e que pode fornecer boas inferÃncias dessa temperatura. Nesse algoritmo, foram testadas, de forma inÃdita, algumas diferentes formulaÃÃes da FCV encontradas na literatura especializada, representando uma delas o estado da arte no assunto. Foram usadas imagens provenientes do satÃlite NOAA-17, recepcionadas na FUNCEME, e um software especÃfico, dessa FundaÃÃo, para se processar as imagens e implementar a metodologia abordada. Alguns testes foram feitos para duas regiÃes relativamente pequenas do semiÃrido cearense, com destaque para uma delas englobando a Bacia Experimental de Aiuaba (BEA), comparando-se as informaÃÃes do satÃlite NOAA-17 com dados in situ (provenientes de sondas no solo) e com dados advindos dos satÃlites ambientais Terra (dados de TSC, disponÃveis na Internet) e Aqua (dados de umidade superficial do solo). Procurou-se mostrar as diferenÃas qualitativas entre os mapeamentos obtidos, de umidade superficial do solo, e entre estes e os oferecidos pela modelagem em geral. Os resultados encontrados mostraram-se promissores para a utilizaÃÃo no territÃrio cearense do ISTV (no modelo trapezoidal) por meio de satÃlites NOAA, com o algoritmo de Kerr para o cÃlculo da TSC e com a FCV dada pelo Scaled Difference Vegetation Index (SDVI), com o fim de se estimar o estado geral da umidade superficial do solo sobre grandes Ãreas. Entretanto, recomenda-se mais validaÃÃo local posterior do mÃtodo usado, para detecÃÃo de possÃveis erros ou limitaÃÃes nÃo vislumbradas nestes primeiros testes, visando sua definitiva aplicaÃÃo operacional no Cearà e mesmo no semiÃrido do Nordeste.
Dinnat, Emmanuel. "De la determination de la salinite de surface des oceans a partir de mesures radiometriques hyperfrequences en bande L". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00003277.
Pełny tekst źródłaLiu, Yuan. "Analyse de sensibilité et estimation de l'humidité du sol à partir de données radar". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD032/document.
Pełny tekst źródłaElectromagnetic waves scattering from a randomly rough surface is of palpable importance in many fields of disciplines and bears itself in various applications spanned from surface treatment to remote sensing of terrain and sea. By knowing the backscattering patterns, one may detect the presence of the undesired random roughness of the reflection surface such as antenna reflector and accordingly devise a means to correct or compensate the phase errors. Therefore, it has been both theoretically and practically necessary to study the electromagnetic wave scattering from the random surfaces. This dissertation focuses on the retrieval of surface soil moisture from radar measurements. The description of the randomly rough surface is presented, followed by the electromagnetic wave interactions with the media. In particular, an advanced integral equation model (AIEM) is introduced. The validity of the AIEM model, which is adopted as a working model, is made by extensive comparison with numerical simulations and experimental data. Also analyzes the characteristics of the bistatic radar configurations and dissects the sensitivity of bistatic scattering to soil moisture and surface roughness of soil surfaces. Meanwhile presents a framework of soil moisture retrieval from radar measurements using a recurrent Kalman filter-based neural network. The network training and data inversion are described in detail
Aubert, Maëlle. "Caractérisation de l’état de surface des sols nus agricoles par imagerie radar TerraSAR-X". Electronic Thesis or Diss., Paris, AgroParisTech, 2012. http://www.theses.fr/2012AGPT0047.
Pełny tekst źródłaIn the context of sustainable development, soil and water resources management is a key issue from not only the environmental point of view, but also from a socioeconomic perspective. Soil moisture, roughness, composition, and slaking crusts are some key variables used to understand and model natural hazards, such as erosion, drought and floods. For agricultural bare soils (most subject to runoff), numerous studies have already shown the potential of C-band RADAR data for the mapping of soil moisture and roughness. However, the application of these methods in operational settings remained limited.In this context, the first objective of this thesis was to analyse the sensitivity of X-band TerraSAR-X sensors to soil surface characteristics (SSC) at high spatial and temporal resolutions. Different TerraSAR-X configurations were evaluated and results were used to define the optimal instrumental configuration for the characterization of each SSC parameter. The comparison of TerraSAR-X sensor sensitivity with equivalent levels recorded with the C-band sensor showed that the TerraSAR-X sensor is undoubtedly the most suitable of the two when estimating and mapping soil moisture at a fine scale (50 m²).The second objective of this work was to develop a method to estimate and map soil moisture levels of agricultural bare soil. To achieve this goal, methods that are commonly used to retrieve soil moisture from C-band, have been tested on X-band data. The accuracy of soil moisture estimations using an empirical algorithm was determined, and validated successfully over numerous study sites. A mapping process based uniquely on TerraSAR-X data, both for bare soil detection and for the estimation of soil moisture content, was developed. This innovative chain of « automatic and autonomous» mapping processing steps should enable the utilization of TerraSAR-X data for the mapping of soil moisture levels in operational conditions
AUTRET, MARYLINE. "Etude theorique de la sensibilite du signal retrodiffuse en hyperfrequence aux parametres caracteristiques d'un sol agricole : humidite et rugosite". Paris 7, 1987. http://www.theses.fr/1987PA077269.
Pełny tekst źródłaMartin, Adrien. "Analyse des mesures radiométriques en bande-L au-dessus de l'océan : Campagnes CAROLS". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00850877.
Pełny tekst źródłaLanka, Karthikeyan. "Retrieval of Land Surface Variables using Microwave Remote Sensing". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4252.
Pełny tekst źródłaWu, Chih-Lin, i 吳芝伶. "Estimating Soil Moisture Distribution Using MODIS Satellite Imagery". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8987mw.
Pełny tekst źródła國立屏東科技大學
森林系所
105
Soil moisture is an important feature of hydrological circle that affect the tree growth and vegetation distribution. For this reason, estimation of soil moisture dynamics and distribution patterns of forest land with a long period can provide important information for forest management as well as a reference basis. However, the data which from meteorological station in-situ or field surveys can’t represent dynamic of soil moisture and spatial distribution. Taiwan region was selected as the study area. The satellite images of MODIS were collected from 2008, 2010, 2012, 2014, and 2016, each year were divided into Spring (March to May), Summer (June to August), Autumn (September to October), Winter (November to January), so we had 20 periods images in total. Land surface temperature (LST) and Normalized difference vegetation index (NDVI) were used to estimate Temperature vegetation dryness index (TVDI), which represented the soil moisture index of dryness in this study. After the verification of precipitation and terrain on temporal and space, it is feasible that TVDI could represent soil moisture. Soil moisture of ecological zones in Taiwan was estimated by TVDI. The results showed that the spatial patterns of TVDI in the ecological zones of Taiwan were included the tropical dry forest that is the driest area in order to the low vegetation cover and the moistest area is temperature mountain system. The others ecological zone, the orders of soil moister degree were subtropical mountain systems, tropical moist deciduous forest, tropical rain forest and the tropical moisture deciduous forest that located in Eastern Hengchun Peninsula and the lowland of Kaohsiung.
Sat, Kumar *. "Soil Moisture Modelling, Retrieval From Microwave Remote Sensing And Assimilation In A Tropical Watershed". Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2508.
Pełny tekst źródłaKwok, Damian. "Soil Moisture Estimation by Microwave Remote Sensing for Assimilation into WATClass". Thesis, 2007. http://hdl.handle.net/10012/3378.
Pełny tekst źródłaSat, Kumar *. "Soil Moisture Modelling, Retrieval From Microwave Remote Sensing And Assimilation In A Tropical Watershed". Thesis, 2012. https://etd.iisc.ac.in/handle/2005/2508.
Pełny tekst źródłaTuttle, Samuel Everett. "Interrelationships between soil moisture and precipitation large scales, inferred from satellite observations". Thesis, 2015. https://hdl.handle.net/2144/14060.
Pełny tekst źródłaLIAO, SHIH-YUAN, i 廖詩媛. "Effects of Moisture content for Microwave Treatment in Soil and Groundwater Remediation". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/fjz2r3.
Pełny tekst źródła國立聯合大學
環境與安全衛生工程學系碩士班
107
Microwave heating can offer a faster processing rate than conventional heating techniques. In this study, microwave is applied in remediation of soil and groundwater contamination. The quartz sand is used to simulate the sandy soil. Under different soil water content, the phenomenon of microwave energy transmission and the effect of contamination removal are discussed. This study is discussed in two parts:The first part discusses the transmission of microwaves in quartz sand with soil water content of 0 % to 24 % . The results show that at all kinds of soil water content, the temperature is proportional to the power of microwave and launch time, and the higher the temperature increases as the intensity of fire power increases. In the soil water content of 4 %, the maximum increase in sand temperature and the highest water temperature at a distance of 15 cm , microwave transmission distance is the furthest , and energy is transmitted and used more effectively. In addition, when the soil water contains manganese ion concentration of 0.5 to 10 mg/L, the temperature change trend is similar to that of quartz sand without addition of manganese ions. The second part discusses the effectiveness of microwave treatment of Toluene. The Toluene removal rate resulted in a higher water-containing soil than dry sand. The maximum Toluene removal rate is 70.96 %.
Yuan, Pei-yao, i 袁培堯. "Using MODIS and AMSR-E Satellite Data to Estimate Land Surface Soil Moisture". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/39769473699525102148.
Pełny tekst źródła國立中央大學
土木工程研究所
100
Soil moisture is an important factor for the exchange of water between the land surface and plant transpiration. It has tremendous effects on agriculture, the environment and climate. It is hard to evaluate long term land surface dryness by field investigation or ground survey. Using remote sensing technology can get soil moisture information extensively. The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provide global soil moisture product, the spatial resolution is 25km. The spatial resolution is not good enough to satisfy the demand for agricultural planning or drought monitoring. In the literary, using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image to observe land surface water content is feasible. A land surface drought index called Normalized Multi-Band Drought Index (NMDI) based on two short wave infrared (SWIR) channel in MODIS as the soil moisture sensitive band, is used for estimating land surface soil moisture, and the spatial resolution is up to 1km. The main objective of this study is to estimate soil moisture conditions of the Central American region using MODIS and AMSR-E data in 2010 and 2011 dry season.