Gotowa bibliografia na temat „Microwave networks”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microwave networks”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microwave networks"
Son, Wonhyung, Won-Kwang Park i Seong-Ho Son. "A Neural Network-Based Microwave Imaging Method for Object Localization". Journal of Electromagnetic Engineering and Science 22, nr 5 (30.09.2022): 576–79. http://dx.doi.org/10.26866/jees.2022.5.r.125.
Pełny tekst źródłaStepanets, I. V., V. A. Stepanets, E. M. Zaychik i S. M. Odoevsky. "FEATURES OF THE APPLICATION AND PLANNING OF THE MICROWAVE TRANSMISSION IN THE 5th GENERATION NETWORKS". Informatization and communication, nr 3 (24.05.2019): 77–83. http://dx.doi.org/10.34219/2078-8320-2019-10-3-77-83.
Pełny tekst źródłaSemennikov, Anton V. "MICROWAVE ELECTRONICS TECHNOLOGIES FOR 5G AND 6G WIRELESS NETWORKS". EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 9/6, nr 150 (2024): 176–84. http://dx.doi.org/10.36871/ek.up.p.r.2024.09.06.020.
Pełny tekst źródłaOvereem, A., H. Leijnse i R. Uijlenhoet. "Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network". Atmospheric Measurement Techniques Discussions 8, nr 8 (7.08.2015): 8191–230. http://dx.doi.org/10.5194/amtd-8-8191-2015.
Pełny tekst źródłaKatkevičius, Andrius, Darius Plonis, Robertas Damaševičius i Rytis Maskeliūnas. "Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review". Electronics 11, nr 15 (28.07.2022): 2360. http://dx.doi.org/10.3390/electronics11152360.
Pełny tekst źródłaWang, Lin, Guangying Wang i Jingxu Chen. "IOT-Based Injection-Locked Microwave Photonic Frequency Division Signal Processing". Mobile Information Systems 2022 (27.09.2022): 1–10. http://dx.doi.org/10.1155/2022/1351399.
Pełny tekst źródłaMilovanovic, Bratislav, Vera Markovic, Zlatica Marinkovic i Zoran Stankovic. "Some applications of neural networks in microwave modeling". Journal of Automatic Control 13, nr 1 (2003): 39–46. http://dx.doi.org/10.2298/jac0301039m.
Pełny tekst źródłaOvereem, Aart, Hidde Leijnse i Remko Uijlenhoet. "Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network". Atmospheric Measurement Techniques 9, nr 5 (1.06.2016): 2425–44. http://dx.doi.org/10.5194/amt-9-2425-2016.
Pełny tekst źródłaMu, Zhong Guo, Xue Lian Bai, Yi Ding Luo, Jian Ting Mei i Ming Hu Zhang. "Study on Microwave Curing of Polyurethane (PU)/Epoxy (EP) Interpenetrating Networks (IPN)". Applied Mechanics and Materials 556-562 (maj 2014): 649–52. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.649.
Pełny tekst źródłaWang, Lulu. "Holographic Microwave Image Classification Using a Convolutional Neural Network". Micromachines 13, nr 12 (23.11.2022): 2049. http://dx.doi.org/10.3390/mi13122049.
Pełny tekst źródłaRozprawy doktorskie na temat "Microwave networks"
Mohammad, Malik Adeel, i Saeed Muhammad Sheharyar. "Load Balancing in Microwave Networks". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121698.
Pełny tekst źródłaMcKenzie, Wilfred. "Characterisation of microwave passive networks based on electromagnetic analysis". Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278080.
Pełny tekst źródłaWang, Fang. "Knowledge based neural networks for microwave modeling and design". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ37081.pdf.
Pełny tekst źródłaDias, De Macedo Filho Antonio. "Microwave neural networks and fuzzy classifiers for ES systems". Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244066.
Pełny tekst źródłaWang, Fang Carleton University Dissertation Engineering Electronics. "Knowledge based neural networks for microwave modeling and design". Ottawa, 1998.
Znajdź pełny tekst źródłaBasarudin, Hafiz. "Development of a heterogeneous microwave network, fade simulation tool applicable to networks that span Europe". Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:5774.
Pełny tekst źródłaMuñoz-Arcos, Christian Daniel. "Optical Microwave Signal Generation for Data Transmission in Optical Networks". Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0013.
Pełny tekst źródłaThe massive growth of telecommunication services and the increasing global data traffic boostthe development, implementation, and integration of different networks for data transmission.An example of this development is the optical fiber networks, responsible today for theinter-continental connection through long-distance links and high transfer rates. The opticalnetworks, as well as the networks supported by other transmission media, use electricalsignals at specific frequencies for the synchronization of the network elements. The qualityof these signals is usually determined in terms of phase noise. Due to the major impact ofthe phase noise over the system performance, its value should be minimized.The research work presented in this document describes the design and implementation ofan optoelectronic system for the microwave signal generation using a vertical-cavity surfaceemittinglaser (VCSEL) and its integration into an optical data transmission system. Consideringthat the proposed system incorporates a directly modulated VCSEL, a theoreticaland experimental characterization was developed based on the laser rate equations, dynamicand static measurements, and an equivalent electrical model of the active region. This proceduremade possible the extraction of some VCSEL intrinsic parameters, as well as thevalidation and simulation of the VCSEL performance under specific modulation conditions.The VCSEL emits in C-band, this wavelength was selected because it is used in long-haullinks. The proposed system is a self-initiated oscillation system caused by internal noise sources,which includes a VCSEL modulated in large signal to generate optical pulses (gain switching).The optical pulses, and the optical frequency comb associated, generate in electricaldomain simultaneously a fundamental frequency (determined by a band-pass filter) and severalharmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture.Both the jitter and optical pulse width were determined when different resonantcavities and polarization currents were employed. The lowest pulse duration was 85 ps andwas achieved when the fundamental frequency was 2.5 GHz. As for the optical frequencycomb, it was demonstrated that its flatness depends on the electrical modulation conditions.The flattest profiles are obtained when the fundamental frequency is higher than the VCSELrelaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter.The electrical signal provides the synchronization of the data generating equipment,whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated thatthe fundamental frequency and harmonics could be extracted from the optical data signaltransmitted by a band-pass filter. It was also experimentally proved that the pulsed returnto-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than 10−9 whenthe optical power at the receiver is higher than -33 dBm. la plus faible, 85 ps, a été obtenue lorsque la fréquence fondamentale du système était de 2,5 GHz. En ce qui concerne le peigne de fréquences optiques, il a été démontré que la formedu peigne dépend des conditions de modulation électrique et que les profils les plus platssont obtenus lorsque la fréquence fondamentale est supérieure à la fréquence de relaxationdu VCSEL. Les sorties électrique et optique du système ont été intégrées dans un émetteur optique. Lesignal électrique permet la synchronisation de l’équipement responsable de la génération desdonnées, tandis que les impulsions optiques sont utilisées comme porteuse optique. La transmissionde données à 155,52 Mb/s, 622,08 Mb/s et 1,25 Gb/s a été validée expérimentalement
Hedrick, Jeffrey C. "High performance polymeric networks and thermoplastic blends : microwave versus thermal processing /". Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07122007-103925/.
Pełny tekst źródłaVita. Abstract. No film copy made for this title. Includes bibliographical references (leaves 243-254). Also available via the Internet.
Lochtie, Gail D. "Propagation at microwave frequencies in the presence of tropospheric stratified layers". Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303451.
Pełny tekst źródłaPratap, Rana Jitendra. "Design and Optimization of Microwave Circuits and Systems Using Artificial Intelligence Techniques". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7225.
Pełny tekst źródłaKsiążki na temat "Microwave networks"
Strobel, Otto, red. Optical and Microwave Technologies for Telecommunication Networks. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119114857.
Pełny tekst źródłaLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. Wyd. 2. New York: McGraw-Hill, 2010.
Znajdź pełny tekst źródłaLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. Wyd. 2. New York: McGraw-Hill, 2010.
Znajdź pełny tekst źródłaLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. Wyd. 2. New York: McGraw-Hill, 2010.
Znajdź pełny tekst źródłaLo, Jonathan O. Y. Time domain finite element analysis of microwave planar networks. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Znajdź pełny tekst źródłaFeher, Kamilo. Digital communications: Microwave applications. New Delhi: Prentice-Hall, 1987.
Znajdź pełny tekst źródłaWincza, Krzysztof. Design of microwave networks with broadband directional couplers: Projektowanie układów mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe. Krakow: AGH University of Science and Technology Press, 2011.
Znajdź pełny tekst źródłaDobrowolski, Janusz. Computer-aided analysis, modeling, and design of microwave networks: The wave approach. Boston: Artech House, 1996.
Znajdź pełny tekst źródłaJ, Reddy C., i Langley Research Center, red. Application of FEM to estimate complex permittivity of dielectric material at microwave frequency using waveguide measurements. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaCataldo, Andrea. Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Microwave networks"
Benson, F. A., i T. M. Benson. "Microwave networks". W Fields, Waves and Transmission Lines, 150–83. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2382-2_6.
Pełny tekst źródłaNadiv, Ron. "Microwave Backhaul Networks". W Convergence of Mobile and Stationary Next-Generation Networks, 163–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470630976.ch6.
Pełny tekst źródłaQin, Juehang, i A. Hubler. "Reducing Microwave Absorption with Chaotic Microwaves". W Lecture Notes in Networks and Systems, 119–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52621-8_11.
Pełny tekst źródłaNoghanian, Sima, Abas Sabouni, Travis Desell i Ali Ashtari. "Inclusion of A Priori Information Using Neural Networks". W Microwave Tomography, 87–141. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0752-6_5.
Pełny tekst źródłaMartín, Ferran, Jordi Naqui, Francisco Medina, Lei Zhu i Jiasheng Hong. "INTRODUCTION TO BALANCED TRANSMISSION LINES, CIRCUITS, AND NETWORKS". W Balanced Microwave Filters, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119238386.ch1.
Pełny tekst źródłaRaghunandan, Krishnamurthy. "Microwave and Millimeter-Wave Links". W Introduction to Wireless Communications and Networks, 277–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92188-0_14.
Pełny tekst źródłaAl-Zoubi, Abdallah. "Flipping the Microwave Engineering Class". W Lecture Notes in Networks and Systems, 809–19. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26876-2_77.
Pełny tekst źródłaKoul, Shiban Kishen, i Sukomal Dey. "Micromachined Microwave Phase Shifters". W Radio Frequency Micromachined Switches, Switching Networks, and Phase Shifters, 77–100. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351021340-5.
Pełny tekst źródłaSisodiya, Divya, Yash Bahuguna, Akanksha Srivastava i Gurjit Kaur. "Green Microwave and Satellite Communication Systems". W Green Communication Technologies for Future Networks, 231–52. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003264477-13.
Pełny tekst źródłaGuglielmi, M. "Microwave Networks and the Method of Moments". W Applied Computational Electromagnetics, 131–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Microwave networks"
Masud, Md Abdullah Al, Alazar Araia, Yuxin Wang, Jianli Hu i Yuhe Tian. "Machine Learning-Aided Process Design for Microwave-Assisted Ammonia Production". W Foundations of Computer-Aided Process Design, 316–21. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.121422.
Pełny tekst źródłaGemmato, Valentina, Filippo Scotti, Federico Camponeschi, Luca Rinaldi, Marco Bartocci, Claudio Porzi i Paolo Ghelfi. "Microwave Photonics Optical Filter for ESM Systems". W 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647818.
Pełny tekst źródłaPIRKL, W. "MICROWAVE ELECTRONICS – MICROWAVE NETWORKS". W Proceedings of the Joint US-CERN-Japan International School. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447324_0004.
Pełny tekst źródłaLembo, Leonardo, Salvatore Maresca, Giovanni Serafino, Filippo Scotti, Antonio Malacarne, Paolo Ghelfi i Antonella Bogoni. "Microwave Photonics for a Radar Network". W Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth2d.2.
Pełny tekst źródłaKodjo, Alvinice, Brigitte Jaumard, Napoleao Nepomuceno, Mejdi Kaddour i David Coudert. "Dimensioning microwave wireless networks". W 2015 IEEE International Conference on Signal Processing for Communications (ICC). IEEE, 2015. http://dx.doi.org/10.1109/icc.2015.7248751.
Pełny tekst źródłaMinasian, R. A., X. Yi i L. Li. "Microwave photonic processing of high-speed microwave signals". W 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550273.
Pełny tekst źródłaZvonimir Vrazic, Dubravko Zagar i Sonja Grgic. "Adaptive modulation in microwave networks". W ELMAR 2007. IEEE, 2007. http://dx.doi.org/10.1109/elmar.2007.4418841.
Pełny tekst źródłaCharalambous, Georgios, i Stavros Iezekiel. "Microwave Photonic Linear Frequency Networks". W 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. http://dx.doi.org/10.1109/icton.2019.8840536.
Pełny tekst źródłaGloba, L., Y. Demidova i M. Ternovoy. "Network Anomaly Detection using Neural Networks". W 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256445.
Pełny tekst źródłaCarpintero, Guillermo, Muhsin Ali, Luis Enrique García-Muñoz, Frédéric van Dijk, Robinson Cruzoe Guzman, Douwe H. Geuzebroek, Chris G. H. Roeloffzen, David de Felipe i Norbert Keil. "Advances in hybrid integrated microwave photonic systems for millimeter- and Terahertz wave generation". W Photonic Networks and Devices. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/networks.2020.netu3b.4.
Pełny tekst źródłaRaporty organizacyjne na temat "Microwave networks"
Singh, D., M. J. Salter i N. M. Ridler. Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies. National Physical Laboratory, wrzesień 2020. http://dx.doi.org/10.47120/npl.tqe14.
Pełny tekst źródłaWong, N. C. Optical-to-Microwave Frequency Chain Utilizing a Two-Laser-Based Optical Parametric Oscillator Network,. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1995. http://dx.doi.org/10.21236/ada300860.
Pełny tekst źródłaDuda, L. E. User manual for CSP{_}VANA: A check standards measurement and database program for microwave network analyzers. Office of Scientific and Technical Information (OSTI), październik 1997. http://dx.doi.org/10.2172/541945.
Pełny tekst źródła