Gotowa bibliografia na temat „Microscopy and tomography”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microscopy and tomography”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microscopy and tomography"
van der Krift, Theo, Ulrike Ziese, Willie Geerts i Bram Koster. "Computer-Controlled Transmission Electron Microscopy: Automated Tomography". Microscopy and Microanalysis 7, S2 (sierpień 2001): 968–69. http://dx.doi.org/10.1017/s1431927600030919.
Pełny tekst źródłaWang, Xinkun, Kedi Xiong, Xin Jin i Sihua Yang. "Tomography-assisted Doppler photoacoustic microscopy: proof of concept". Chinese Optics Letters 18, nr 10 (2020): 101702. http://dx.doi.org/10.3788/col202018.101702.
Pełny tekst źródłaButz, T., D. Lehmann, T. Reinert, D. Spemann i J. Vogt. "Ion Microscopy and Tomography". Acta Physica Polonica A 100, nr 5 (listopad 2001): 603–13. http://dx.doi.org/10.12693/aphyspola.100.603.
Pełny tekst źródłaWang, Lihong V. "Photoacoustic Tomography and Microscopy". Optics and Photonics News 19, nr 7 (1.07.2008): 36. http://dx.doi.org/10.1364/opn.19.7.000036.
Pełny tekst źródłaXiu, Peng, Xin Zhou, Cuifang Kuang, Yingke Xu i Xu Liu. "Controllable tomography phase microscopy". Optics and Lasers in Engineering 66 (marzec 2015): 301–6. http://dx.doi.org/10.1016/j.optlaseng.2014.10.001.
Pełny tekst źródłaBorg, Thomas K., James A. Stewart i Michael A. Sutton. "Imaging the Cardiovascular System: Seeing Is Believing". Microscopy and Microanalysis 11, nr 3 (12.05.2005): 189–99. http://dx.doi.org/10.1017/s1431927605050439.
Pełny tekst źródłaCarlson, David B., Jeff Gelb, Vadim Palshin i James E. Evans. "Laboratory-Based Cryogenic Soft X-Ray Tomography with Correlative Cryo-Light and Electron Microscopy". Microscopy and Microanalysis 19, nr 1 (18.01.2013): 22–29. http://dx.doi.org/10.1017/s1431927612013827.
Pełny tekst źródłaSmallwood, R., P. Metherall, D. Hose, M. Delves, H. Pollock, A. Hammiche, C. Hodges, V. Mathot i P. Willcocks. "Tomographic imaging and scanning thermal microscopy: thermal impedance tomography". Thermochimica Acta 385, nr 1-2 (marzec 2002): 19–32. http://dx.doi.org/10.1016/s0040-6031(01)00705-5.
Pełny tekst źródłaKo, Dae-Sik. "Multiple-Transducer Scheme for Scanning Tomographic Acoustic Microscopy Using Transverse Waves". Ultrasonic Imaging 19, nr 4 (październik 1997): 294–304. http://dx.doi.org/10.1177/016173469701900405.
Pełny tekst źródłaQin, Wei, Qian Chen i Lei Xi. "A handheld microscope integrating photoacoustic microscopy and optical coherence tomography". Biomedical Optics Express 9, nr 5 (16.04.2018): 2205. http://dx.doi.org/10.1364/boe.9.002205.
Pełny tekst źródłaRozprawy doktorskie na temat "Microscopy and tomography"
Godavarthi, Charankumar. "Optical diffraction tomography microscopy : towards 3D isotropic super-resolution". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4337/document.
Pełny tekst źródłaThis PhD thesis is devoted to the three-dimensional isotropic resolution improvement using optical tomographic diffraction microscopy (TDM), an emerging optical microscope technique. The principle is to illuminate the sample successively with various angles of coherent light, collect the complex (amplitude and phase) diffracted field and reconstruct the sample 3D permittivity map through an inversion algorithm. A single TDM measurement was shown to combine several popular microscopy techniques such as bright-field microscope, dark-field microscope, phase-contrast microscope, confocal microscope, 2D and 3D synthetic aperture microscopes. All rely on scalar and linear approximations that assume a linear link between the object and the field diffracted by it, which limit their applicability to retrieve the object quantitatively. Thanks to a rigorous numerical inversion of the TDM diffracted field data which takes into account the polarization of the field and the multiple scattering process, we were able to reconstruct the 3D permittivity map of the object with a λ/4 transverse resolution. A further improvement to λ/10 transverse resolution was achieved by providing a priori information about the sample to the non-linear inversion algorithm. Lastly, the poor axial resolution in microscopes is due to the fundamental asymmetry of illumination and detection. To overcome this, a mirror-assisted tomography configuration was implemented, and has demonstrated a sub-λ/2 axial resolution capability. As a result, TDM can be seen as a powerful tool to reconstruct objects in three-dimensions with their optical material properties at resolution far superior to conventional microscopes
Bertilson, Michael. "Laboratory soft x-ray microscopy and tomography". Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-29950.
Pełny tekst źródłaQC 20110221
Balakishan, Harishankar. "Nanoscale Tomography Based in Electrostatic Force Microscopy". Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/671789.
Pełny tekst źródłaLa capacidad de caracterizar los elementos debajo de la superficie ha sido una necesidad imperiosa en los campos de la ciencia de los materiales, la tecnología de polímeros, la biología y las ciencias médicas. La microscopía de sonda de barrido (SPM por sus siglas en inglés) es una técnica de microscopía que permite exploran la superficie de una muestra a nano escala utilizando una sonda nanométrica, donde los datos adquiridos se utilizan para reconstruir las propiedades físicas de las muestras en resolución nanométrica (por ejemplo, topografía). Dado que las mediciones se pueden realizar sin contacto, los diferentes tipos de SPM se han convertido en candidatos óptimos para el estudio de propiedades sin necesidad de destruir la muestra. El SPM también posee la ventaja relativa de ser no invasivo, no destructivo, requiere una preparación de muestra relativamente sencilla, puede extenderse a cualquier ambiente (inerte, vacío ambiental), y también medirse en aire, agua o cualquier medio biológico. Entre ellos, la microscopía de fuerza electrostática, se ha utilizado con éxito en investigaciones del subsuelo para estudiar las modificaciones de composición debajo de las capas orgánicas, obtener imágenes debajo de las capas orgánicas, obtener imágenes de moléculas de agua confinada en canales nanométricos, imágenes de nanotubos de carbono, redes de grafeno y nanopartículas dentro de polímeros. Los nanocompuestos, que consisten en nanoestructuras en gran parte de su matriz para mejorar la eficiencia de la matriz, han sido una de las aplicaciones de la ciencia de materiales incorporadas con éxito en las últimas dos décadas. Las nanopartículas de plata tienen especialmente un aluvión de aplicaciones en su haber que van desde aplicaciones de células solares, pantallas táctiles, LED hasta dispositivos portátiles flexibles. Comprender las características del subsuelo o la tomografía de estos nanocompuestos podría ayudarnos a comprender sus propiedades, interpretándolas en función de su dependencia paramétrica, lo que luego nos ayudaría a ajustarlos para otras aplicaciones. En esta tesis, se han realizado estudios computacionales individuales de nano cables enterrados en una matriz dieléctrica para observar los efectos de varios parámetros que influyen en las imágenes del subsuelo. La resolución espacial tiene una importancia primordial, ya que se estudia su comportamiento de dos nano cables paralelos junto con dos nano cables superpuestos uno encima del otro. Además, el análisis de nanocompuestos de nano cables de plata se han investigado con la ayuda de la microscopía de barrido volumen de fuerza dieléctrica, una técnica propuesta recientemente con el EFM. La mayor parte de la matriz está compuesta de gelatina que puede ofrecer un rango de permitividades dependiendo del grado de hidratación, por ejemplo, aquí εr ~ 5 a εr ~ 14. Esta muestra se analiza experimentalmente, se obtienen imágenes y la profundidad de los nano cables en la matriz se mapean con el análisis teórico. Esta tesis nos proporciona nueva información y técnicas avanzadas a nivel tomográfico que ayudaran a la realización de imágenes de nanoestructuras de nuevos nanomateriales para aplicaciones en Salud y Electrónica.
Niehle, Michael. "Electron tomography and microscopy on semiconductor heterostructures". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17607.
Pełny tekst źródłaElectron tomography exhibits a very poor spread in the research field of epitaxial semiconductor heterostructures in spite of the ongoing miniaturization and increasing three-dimensional (3D) character of nano-structured devices. This necessitates a tomographic approach at the nanometre scale in order to characterize and understand the relation between structure and physical properties of respective material systems. The present work demonstrates the rigorous application of electron tomography to an III-Sb based laser and to an (In,Ga)N/GaN nanocolumn heterostructure. A specific target preparation using a versatile FIB-SEM dual-beam microscope is emphasized as indispensable. The purposeful orientation of the specimen during preparation and the careful selection of an imaging mode in the scanning-/transmission electron microscope (S/TEM) are regarded in great detail. The comprehensive spatial microstructure characterization of the antimonide based heterostructure follows the dimensionality of crystal defects. The facetting and position of a pore (3D defect) which is unexpected in the MBE grown GaSb layer, is determined. The interplay of the initially grown AlSb islands on Si, the formation of a misfit dislocation network at the heterostructure interface (2D defect) and the presence of threading dislocations is investigated by the correlation of tomographic and complementary S/TEM results. The spatial arrangement of dislocations (1D defects) penetrating the whole stack of antimonide layers is revealed by electron tomography. The interaction of these line defects with anti-phase boundaries and with other dislocations is exclusively observed in the 3D result. The insertion of (In,Ga)N into oblique GaN nanocolumns is uniquely accessed by electron tomography. The amount of incorporated indium and the (In,Ga)N layer thickness is shown to vary on the different facets of the GaN core.
Ford, Bridget K. "Computed tomography based spectral imaging for fluorescence microscopy". Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280122.
Pełny tekst źródłaSwinford, Richard William. "An AFM-SIMS Nano Tomography Acquisition System". PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3485.
Pełny tekst źródłaSelin, Mårten. "3D X-ray microscopy: image formation, tomography and instrumentation". Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184095.
Pełny tekst źródłaTomografi i mjukröntgenmikroskopi är en ny teknik för att få ut kvantitativ strukturell 3D information om celler. Dess styrka jämfört med andra tekniker är att den kan avbilda intakta celler i deras nära naturliga tillstånd med ett par 10 nm upplösning, utan omfattande preparering. Dock är metoderna för att rekonstruera 3D-data beroende av algoritmer som antar projektionsdata, vilket bilderna i allmänhet inte är på grund av avbildningsystemens begränsade skärpedjup. För att få ut den fulla potentialen av tomografi i röntgenmikroskopi behövs en ökad förståelse för avbildningsprocessen. Denna avhandling behandlar zonplatte-baserad röntgenmikroskopi för biologisk avbildning och den nödvändiga teorin för en numerisk implementering av en avbildningsmodell i 3D. En ny rekonstruktionsmetod föreslås som förbättrar upplösningen i rekonstruktionen för ett tomografiskt avbildat objekt. Detta visas i simuleringar och experiment. Slutligen omfattar denna avhandling arbete på Stockholms mjukröntgenmikroskop, inklusive en uppgradering av röntgenkällan som ger oöverträffad ljusstyrka för ett kompakt system. Denna uppgradering möjliggör högkvalitativ avbildning av celler i deras nästan naturliga tillstånd med endast 10 sekunders exponering.
QC 20160324
Sharp, Joanne. "Electron tomography of defects". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228638.
Pełny tekst źródłaMazlin, Viacheslav. "Tomographie optique cohérente pour l’imagerie in vivo de la cornée". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET024.
Pełny tekst źródłaThis PhD project aimed to create an optical system for non-contact cellular resolution imaging of the human cornea in vivo. To achieve that, the contact ex vivo time-domain full-field optical coherence tomography (FFOCT) system was transformed into a non-contact in vivo imaging device and was for the first time applied to the human eye. FFOCT acquired images from the entire human cornea, limbus, sclera and tear film, revealing cells and nerves, which could be quantified over a millimetric field-of-view, beyond the capability of confocal microscopy and conventional optical coherence tomography (OCT). Blood flow and tear film dynamics could be directly followed and quantified. Furthermore, FFOCT was combined with a conventional OCT to perform real-time axial eye tracking and defocusing correction. The latter enabled real-time FFOCT imaging and display, which opens a path for future device implementation in clinical research and practice. Bench to bedside transfer of FFOCT is further stimulated by several solutions proposed in the manuscript, aiming to reduce the instrumentational complexity. Finally, a related FFOCT device was applied to imaging in vivo human retina, revealing the photoreceptors
Xiao, Juan. "Development of electron tomography on liquid suspensions using environmental scanning electron microscopy". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI050/document.
Pełny tekst źródłaESEM (Environmental Scanning Electron Microscopy) allows the observation of liquids under specific conditions of pressure and temperature. When working in the transmission mode, i.e. in STEM (Scanning Transmission Electron Microscopy), nano-objects can even be analyzed inside the liquid (“wet-STEM” mode). Moreover, in situ evaporation of water can be performed to study the materials evolution from the wet to the dry state. This work aims at developing electron tomography on liquid suspensions using STEM-in-ESEM, to obtain the 3D structure of nano-objects dispersed in a liquid. In a first part, Monte Carlo simulations and 2D wet-STEM experimental images are combined to study the contrast. Two kinds of liquid nano-materials are chosen as the sample: spherical gold particles (diameter around 40 nm) in suspension in water; latex SBA-PMMA suspension, a copolymer derived from styrene and metacrylic acid esters in aqueous solution, 3% PMMA shell included as steric surfactant. The comparison between simulated and experimental results helps to determine how water can affect the contrast of hydrated nano-materials. Tomography experiments are then performed on dry PU-carbon nanotubes nanocomposites using a previously developed home-made tomography device, and the volume is well reconstructed. When performing tomography on latex suspension, limitations are found on the temperature control of samples. We propose an optimization of the device with new observations conditions to better control water evaporation and condensation of liquid samples. Afterwards, a full 3D analysis on SBA-PMMA latex from dilute suspension to very concentrated one is performed, and a further study is presented in presence of a surfactant. The encouraging reconstruction results are used to model the particles arrangement. This shows the potentialities of wet-STEM tomography for the characterization of both solid and liquid nano-materials
Książki na temat "Microscopy and tomography"
Miller, M. K. Atom probe tomography: Analysis at the atomic level. New York: Kluwer Academic / Plenum Publishers, 2000.
Znajdź pełny tekst źródłaLarson, David J. Local electrode atom probe tomography: A user's guide. New York: Springer, 2013.
Znajdź pełny tekst źródłaAtom Probe Tomography: Analysis at the Atomic Level. Boston, MA: Springer US, 2000.
Znajdź pełny tekst źródłaInternational, Meeting on Scanning Laser Ophthalmoscopy Tomography and Microscopy (7th 1999). Seventh International Meeting on Scanning Laser Ophthalmoscopy, Tomography, and Microscopy. Boston: Kluwer Academic Publishers, 2001.
Znajdź pełny tekst źródłaStock, Stuart R. MicroComputed tomography: Methodology and applications. Boca Raton: CRC Press, 2009.
Znajdź pełny tekst źródła1940-, Frank J., red. Electron tomography: Methods for three-dimensional visualization of structures in the cell. Wyd. 2. New York: Springer, 2006.
Znajdź pełny tekst źródłaAdam, Kruk. Tomografia elektronowa i jej zastosowanie w obrazowaniu i metrologii mikrostruktury materiałów: Electron tomography and its application in imaging and metrology of the microstructure of materials. Kraków: Wydawnictwa AGH, 2012.
Znajdź pełny tekst źródłaInternational Conference on Optical Instruments and Technology (2009 Shanghai, China). 2009 International Conference on Optical Instruments and Technology: Optical trapping and microscopic imaging : 19-22 October 2009, Shanghai, China. Redaktorzy Yuan Xiaocong, Zhongguo yi qi yi biao xue hui, Zhongguo guang xue xue hui, SPIE (Society) i Zhongguo yi qi yi biao xue hui. Optoelectronic-Mechanic Technology and System Integration Chapter. Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaK, Miller M., Oak Ridge National Laboratory i U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology., red. Atom probe tomography characterization of the solute distributions in a neutron-irradiated and annealed pressure vessel steel weld. Washington, DC: U.S. Nuclear Regulatory Commission, 2000.
Znajdź pełny tekst źródłaL, Ackerman Jerome, Ellingson W. A i Materials Research Society, red. Advanced tomographic imaging methods for the analysis of materials: Symposium held November 28-30, 1990, Boston, Massachusetts, U.S.A. Pittsburgh, Pa: Materials Research Society, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Microscopy and tomography"
Russ, John C. "Tomography". W Computer-Assisted Microscopy, 419–37. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0563-7_13.
Pełny tekst źródłaWeyland, Matthew, i Paul Midgley. "Electron Tomography". W Transmission Electron Microscopy, 343–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0_12.
Pełny tekst źródłaAguirre, Aaron D., Chao Zhou, Hsiang-Chieh Lee, Osman O. Ahsen i James G. Fujimoto. "Optical Coherence Microscopy". W Optical Coherence Tomography, 865–911. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_29.
Pełny tekst źródłaAguirre, A. D., i J. G. Fujimoto. "Optical Coherence Microscopy". W Optical Coherence Tomography, 505–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_17.
Pełny tekst źródłaMiller, M. K. "Field Ion Microscopy". W Atom Probe Tomography, 45–83. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4281-0_3.
Pełny tekst źródłaLin, Angela S. P., Stuart R. Stock i Robert E. Guldberg. "Microcomputed Tomography". W Springer Handbook of Microscopy, 1205–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_24.
Pełny tekst źródłaMidgley, Paul A., i Matthew Weyland. "STEM Tomography". W Scanning Transmission Electron Microscopy, 353–92. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7200-2_8.
Pełny tekst źródłaCarazo, J. M., C. O. Sorzano, E. Rietzel, R. Schröder i R. Marabini. "Discrete Tomography in Electron Microscopy". W Discrete Tomography, 405–16. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1568-4_18.
Pełny tekst źródłaKelly, Thomas F. "Atom-Probe Tomography". W Springer Handbook of Microscopy, 715–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_15.
Pełny tekst źródłaPlitzko, Jürgen, i Wolfgang P. Baumeister. "Cryo-Electron Tomography". W Springer Handbook of Microscopy, 189–228. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Microscopy and tomography"
Colon, Jorge, i Hyungsik Lim. "Adaptive Field Microscopy: Shaping Field for 3D Laser Scanning Microscopy". W Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ots.2016.oth4c.8.
Pełny tekst źródłaBell, Kevan, Saad Abbasi, Nicholas Pellegrino i Parsin Haji Reza. "Hyperspectral Photoacoustic Remote Sensing Microscopy". W Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ots.2020.sw4d.4.
Pełny tekst źródłaZhang, Hao F. "Optical Ultrasound Detection in Photoacoustic Microscopy". W Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ots.2016.oth1c.1.
Pełny tekst źródłaLiang, Yizhi, Chao Liu, long jin i Lidai Wang. "Single-Cell Optical-Resolution Photoacoustic Microscopy". W Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ots.2018.ow4d.7.
Pełny tekst źródłaWang, Peng. "3D Electron Ptychographical Tomography". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1146.
Pełny tekst źródłaZhang, Wei, Yanxiu Li, Van Phuc Nguyen, Guan Xu, Yannis M. Paulus i Xueding Wang. "Integrated photoacoustic microscopy, optical coherence tomography and fluorescence microscopy imaging of rabbit ocular neovascularization in vivo". W Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ots.2020.sth4d.3.
Pełny tekst źródłaSaghi, Zineb. "Workflow for correlative energy-dispersive X-ray tomography and atom probe tomography". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.327.
Pełny tekst źródłaStockton, Patrick A., Keith A. Wernsing, Jeff J. Field, Jeff Squier i Randy A. Bartels. "Single Pixel Fourier Computed Tomography". W Novel Techniques in Microscopy. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/ntm.2019.nw2c.2.
Pełny tekst źródłaBergoënd, Isabelle, Cristian Arfire, Yann Cotte i Christian Depeursinge. "Complex field imaging for diffraction tomography". W Novel Techniques in Microscopy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ntm.2011.ntuc7.
Pełny tekst źródłaDrobek, Dominik. "Correlative 3D characterization of hierarchical zeolite structures linking nano X-ray tomography and 360° electron tomography". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.859.
Pełny tekst źródłaRaporty organizacyjne na temat "Microscopy and tomography"
Edmondson, Philip D. An On-Axis Tomography Holder for Correlative Electron and Atom Probe Microscopy. Office of Scientific and Technical Information (OSTI), październik 2018. http://dx.doi.org/10.2172/1479802.
Pełny tekst źródłaKnipling, Keith, Fred Meisenkothen i Eric B. Steel. Proceedings of the International Conference on Atom-Probe Tomography and Microscopy (APT&M 2018). National Institute of Standards and Technology, grudzień 2019. http://dx.doi.org/10.6028/nist.sp.2100-03.
Pełny tekst źródłaRiccardella, Scott, i Jason Van Velsor. PR-335-15370-R01 Evaluation of NDE Methodologies for In-Ditch Characterization of ERW Seam Anomalies. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2019. http://dx.doi.org/10.55274/r0011596.
Pełny tekst źródłaRiccardella, Scott, i Jason Van Velsor. PR-335-173844-R01 NDE Crack Depth Sizing Performance Validation for Multiple UT Techniques. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maj 2020. http://dx.doi.org/10.55274/r0011676.
Pełny tekst źródłaAlexander, Chris, i Atul Ganpatye. PR-652-203802-R01 Computed Tomography for the Development of Standards for Anomaly Detection-Characterization. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2022. http://dx.doi.org/10.55274/r0012246.
Pełny tekst źródłaElbaum, Michael, i Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, marzec 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Pełny tekst źródłaJackson, J. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results. Office of Scientific and Technical Information (OSTI), luty 2006. http://dx.doi.org/10.2172/883616.
Pełny tekst źródłaKing, W. E., G. H. Campbell, D. L. Haupt, J. H. Kinney, R. A. Riddle i W. L. Wien. Mechanism of ductile rupture in the Al/sapphire system elucidated using x-ray tomographic microscopy. Office of Scientific and Technical Information (OSTI), grudzień 1995. http://dx.doi.org/10.2172/231570.
Pełny tekst źródłaWendelberger, James. Registration of Laser Confocal Microscope (LCM), Wide Area Measurement System (WAMS), and X-Ray Tomographic (XRAY) Images. Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1821351.
Pełny tekst źródłaSparks, Paul, Jesse Sherburn, William Heard i Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/41963.
Pełny tekst źródła