Artykuły w czasopismach na temat „Micropump-based System”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Micropump-based System”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Khaustov, A. I., G. G. Boyarsky, and K. V. Krotov. "Designing of a Micropump System for Circulatory Support." Journal of the Russian Universities. Radioelectronics 25, no. 5 (2022): 104–12. http://dx.doi.org/10.32603/1993-8985-2022-25-5-104-112.
Pełny tekst źródłaNi, Jun Hui, Bei Zhi Li, and Jian Guo Yang. "A MEMS-Based PDMS Micropump Utilizing Electromagnetic Actuation and Planar In-Contact Check Valves." Advanced Materials Research 139-141 (October 2010): 1574–77. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1574.
Pełny tekst źródłaJin, Wenzui, Yimin Guan, Qiushi Wang, et al. "A Smart Active Phase-Change Micropump Based on CMOS-MEMS Technology." Sensors 23, no. 11 (2023): 5207. http://dx.doi.org/10.3390/s23115207.
Pełny tekst źródłaWang, Bao Wei, Xiang Cheng Chua, and Long Tu Li. "A Piezoelectric Micropump Based on MEMS Fabrication." Key Engineering Materials 368-372 (February 2008): 215–17. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.215.
Pełny tekst źródłaWieczorek, Marcin, Paweł Kościelniak, Paweł Świt, Justyna Paluch, and Joanna Kozak. "Solenoid micropump-based flow system for generalized calibration strategy." Talanta 133 (February 2015): 21–26. http://dx.doi.org/10.1016/j.talanta.2014.04.053.
Pełny tekst źródłaLeu, Tzong-Shyng, and Ruei-Hung Kao. "Design and operation of a bio-inspired micropump based on blood-sucking mechanism of mosquitoes." Modern Physics Letters B 32, no. 12n13 (2018): 1840027. http://dx.doi.org/10.1142/s0217984918400274.
Pełny tekst źródłaLiu, Yiqun, Qi Yu, Xiaojin Luo, Le Ye, Li Yang, and Yue Cui. "A Microtube-Based Wearable Closed-Loop Minisystem for Diabetes Management." Research 2022 (October 27, 2022): 1–14. http://dx.doi.org/10.34133/2022/9870637.
Pełny tekst źródłaChen, He, Xiaodan Miao, Hongguang Lu, Shihai Liu, and Zhuoqing Yang. "High-Efficiency 3D-Printed Three-Chamber Electromagnetic Peristaltic Micropump." Micromachines 14, no. 2 (2023): 257. http://dx.doi.org/10.3390/mi14020257.
Pełny tekst źródłaShoji, Eiichi. "Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator." Sensors and Actuators B: Chemical 237 (December 2016): 660–65. http://dx.doi.org/10.1016/j.snb.2016.06.153.
Pełny tekst źródłaGallah, Nader, Nizar Habbachi, and Kamel Besbes. "Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump." Microsystem Technologies 23, no. 12 (2017): 5781–87. http://dx.doi.org/10.1007/s00542-017-3414-9.
Pełny tekst źródłaRodrigues, Eunice R. G. O., Rui A. S. Lapa, and José L. F. C. Lima. "A Multicommutated Flow System Based on an Opened‐Loop with Micropump Propulsion." Analytical Letters 40, no. 8 (2007): 1632–45. http://dx.doi.org/10.1080/00032710701380517.
Pełny tekst źródłaWang, Ping, Zilin Chen, and Hsueh-Chia Chang. "An integrated micropump and electrospray emitter system based on porous silica monoliths." ELECTROPHORESIS 27, no. 20 (2006): 3964–70. http://dx.doi.org/10.1002/elps.200600120.
Pełny tekst źródłaHaldkar, Rakesh Kumar, Vijay Kumar Gupta, Tanuja Sheorey, and Ivan A. Parinov. "Design, Modeling, and Analysis of Piezoelectric-Actuated Device for Blood Sampling." Applied Sciences 11, no. 18 (2021): 8449. http://dx.doi.org/10.3390/app11188449.
Pełny tekst źródłaVerma, P., D. Chatterjee, and T. Nagarajan. "Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 4 (2009): 953–63. http://dx.doi.org/10.1243/09544062jmes1315.
Pełny tekst źródłaAttiguppe, Ajay Prabhakar, Dhiman Chatterjee, and Amitava DasGupta. "A Novel Integrated Transdermal Drug Delivery System with Micropump and Microneedle Made from Polymers." Micromachines 14, no. 1 (2022): 71. http://dx.doi.org/10.3390/mi14010071.
Pełny tekst źródłaVoigt, P., G. Schrag, and G. Wachutka. "Electrofluidic full-system modelling of a flap valve micropump based on Kirchhoffian network theory." Sensors and Actuators A: Physical 66, no. 1-3 (1998): 9–14. http://dx.doi.org/10.1016/s0924-4247(97)01783-4.
Pełny tekst źródłaNguyen, N. T., S. Schubert, S. Richter, and W. Dötzel. "Hybrid-assembled micro dosing system using silicon-based micropump/ valve and mass flow sensor." Sensors and Actuators A: Physical 69, no. 1 (1998): 85–91. http://dx.doi.org/10.1016/s0924-4247(98)00039-9.
Pełny tekst źródłaLi, Kai, Xianxin Zhou, Haoyuan Zheng, et al. "Achieving Full Forward Flow of Valveless Piezoelectric Micropump Used for Micro Analysis System." Actuators 11, no. 8 (2022): 218. http://dx.doi.org/10.3390/act11080218.
Pełny tekst źródłaHansen, Thomas Steen, Keld West, Ole Hassager, and Niels B. Larsen. "An all-polymer micropump based on the conductive polymer poly (3,4-ethylenedioxythiophene) and a polyurethane channel system." Journal of Micromechanics and Microengineering 17, no. 5 (2007): 860–66. http://dx.doi.org/10.1088/0960-1317/17/5/003.
Pełny tekst źródłaGUAN, Y., Z. XU, J. DAI, and Z. FANG. "The use of a micropump based on capillary and evaporation effects in a microfluidic flow injection chemiluminescence system." Talanta 68, no. 4 (2006): 1384–89. http://dx.doi.org/10.1016/j.talanta.2005.08.021.
Pełny tekst źródłaBußmann, Agnes, Henry Leistner, Doris Zhou, et al. "Piezoelectric Silicon Micropump for Drug Delivery Applications." Applied Sciences 11, no. 17 (2021): 8008. http://dx.doi.org/10.3390/app11178008.
Pełny tekst źródłaLiu, Guojun, Xuhao Yang, Yan Li, Zhigang Yang, Wen Hong, and JianFang Liu. "Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System." Advances in Materials Science and Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/160819.
Pełny tekst źródłaHassan, Rubayet, Sevki Cesmeci, Mahmoud Baniasadi, Anthony Palacio, and Austin Robbins. "A Magnetorheological Duckbill Valve Micropump for Drug Delivery Applications." Micromachines 13, no. 5 (2022): 723. http://dx.doi.org/10.3390/mi13050723.
Pełny tekst źródłaDoms, Marco, and Jörg Müller. "Design, Fabrication, and Characterization of a Micro Vapor-Jet Vacuum Pump." Journal of Fluids Engineering 129, no. 10 (2007): 1339–45. http://dx.doi.org/10.1115/1.2776968.
Pełny tekst źródłaNishikata, Kotaro, Masataka Nakamura, Yuto Arai, and Nobuyuki Futai. "An Integrated Pulsation-Free, Backflow-Free Micropump Using the Analog Waveform-Driven Braille Actuator." Micromachines 13, no. 2 (2022): 294. http://dx.doi.org/10.3390/mi13020294.
Pełny tekst źródłaSu, Y., H. Wang, and W. Chen. "Microactuator based on electroplated permanent magnets and flexible polydimethyl siloxane diaphragm." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 3 (2008): 517–24. http://dx.doi.org/10.1243/09544062jmes596.
Pełny tekst źródłaVeeresha, R. K., Muralidhara, Rathnamala Rao, and Astron Manoj Tauro. "Investigation on the Performance of Valveless Pump for Microdelivery of the Fluid, Fabricated Using Tool-Based Micromachining Setup." Journal of Advanced Manufacturing Systems 16, no. 02 (2017): 145–56. http://dx.doi.org/10.1142/s0219686717500093.
Pełny tekst źródłaAndersen, Truls, Bert Scheeren, Wouter Peters, and Huilin Chen. "A UAV-based active AirCore system for measurements of greenhouse gases." Atmospheric Measurement Techniques 11, no. 5 (2018): 2683–99. http://dx.doi.org/10.5194/amt-11-2683-2018.
Pełny tekst źródłaWang, C. T., T. S. Leu, and J. M. Sun. "Unsteady Analysis of Microvalves With No Moving Parts." Journal of Mechanics 23, no. 1 (2007): 9–14. http://dx.doi.org/10.1017/s1727719100001027.
Pełny tekst źródłaNasibullayev, I. Sh. "Reducing the systematic error of the average fluid flow rate in axisymmetric computer model of piezoelectric micropump." Multiphase Systems. 16, no. 1 (2021): 22–33. http://dx.doi.org/10.21662/mfs2021.1.004.
Pełny tekst źródłaMohamed, Youssef, and Christopher L. Passaglia. "A portable feedback-controlled pump for monitoring eye outflow facility in conscious rats." PLOS ONE 18, no. 1 (2023): e0280332. http://dx.doi.org/10.1371/journal.pone.0280332.
Pełny tekst źródłaGuo, Gang, Xuanye Wu, Demeng Liu, et al. "A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps." Micromachines 13, no. 10 (2022): 1620. http://dx.doi.org/10.3390/mi13101620.
Pełny tekst źródłaDarintsev, O. V. "Synthesis of new microfluidics models in the research in the “Robotics and Control in Technical Systems” laboratory." Multiphase Systems 17, no. 1-2 (2022): 74–96. http://dx.doi.org/10.21662/mfs2022.1.007.
Pełny tekst źródłaMamanee, W., A. Tuantranont, N. V. Afzulpurkar, N. Porntheerapat, S. Rahong, and A. Wisitsoraat. "PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems." Journal of Physics: Conference Series 34 (April 1, 2006): 564–69. http://dx.doi.org/10.1088/1742-6596/34/1/093.
Pełny tekst źródłaCesmeci, Sevki, Rubayet Hassan, and Mahmoud Baniasadi. "A Comparative Evaluation of Magnetorheological Micropump Designs." Micromachines 13, no. 5 (2022): 764. http://dx.doi.org/10.3390/mi13050764.
Pełny tekst źródłaChen, Xiao-Ming, Yong-Jiang Li, Dan Han, et al. "A Capillary-Evaporation Micropump for Real-Time Sweat Rate Monitoring with an Electrochemical Sensor." Micromachines 10, no. 7 (2019): 457. http://dx.doi.org/10.3390/mi10070457.
Pełny tekst źródłaWu, Di, Bing Shi, Bin Li, and Wenming Wu. "A Novel Self-Activated Mechanism for Stable Liquid Transportation Capable of Continuous-Flow and Real-time Microfluidic PCRs." Micromachines 10, no. 6 (2019): 350. http://dx.doi.org/10.3390/mi10060350.
Pełny tekst źródłaFournier, S., and E. Chappel. "Modeling of a Piezoelectric MEMS Micropump Dedicated to Insulin Delivery and Experimental Validation Using Integrated Pressure Sensors: Application to Partial Occlusion Management." Journal of Sensors 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3719853.
Pełny tekst źródłaLiu, Xiaopeng, Xingqi Li, Meng Wang, Shuaiqi Cao, Xinfeng Wang, and Guojun Liu. "A High-Performance Piezoelectric Micropump with Multi-Chamber in Series." Applied Sciences 12, no. 9 (2022): 4483. http://dx.doi.org/10.3390/app12094483.
Pełny tekst źródłaZhou, Xuyan, Meng Gao, and Lin Gui. "A Liquid-Metal Based Spiral Magnetohydrodynamic Micropump." Micromachines 8, no. 12 (2017): 365. http://dx.doi.org/10.3390/mi8120365.
Pełny tekst źródłaNasibullayev, I. Sh, and O. V. Darintsev. "Two-dimensional dynamic model of the interaction of a fluid and a piezoelectric bending actuator in a plane channel." Multiphase Systems 14, no. 4 (2019): 220–32. http://dx.doi.org/10.21662/mfs2019.4.029.
Pełny tekst źródłaHong, Yiying, Misael Diaz, Ubaldo M. Córdova-Figueroa, and Ayusman Sen. "Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems." Advanced Functional Materials 20, no. 10 (2010): 1568–76. http://dx.doi.org/10.1002/adfm.201000063.
Pełny tekst źródłaJumril Yunas, Muzalifah Mohd Said, Roer Eka Pawinanto, et al. "Magnetic Polymer Based Micropumps for Microfluidic Sample Delivery System." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 85, no. 1 (2021): 12–21. http://dx.doi.org/10.37934/arfmts.85.1.1221.
Pełny tekst źródłaZhang, Rumi, Graham A. Jullien, and Colin Dalton. "Study on an alternating current electrothermal micropump for microneedle-based fluid delivery systems." Journal of Applied Physics 114, no. 2 (2013): 024701. http://dx.doi.org/10.1063/1.4813484.
Pełny tekst źródłaGuan. "Performance Analysis of a Microfluidic Pump Based on Combined Actuation of the Piezoelectric Effect and Liquid Crystal Backflow Effect." Micromachines 10, no. 9 (2019): 584. http://dx.doi.org/10.3390/mi10090584.
Pełny tekst źródłaKim, Joon-Wan, Thanh V. X. Nguyen, Kazuya Edamura, and Shinichi Yokota. "Triangular Prism and Slit Electrode Pair for ECF Jetting Fabricated by Thick Micromold and Electroforming as Micro Hydraulic Pressure Source for Soft Microrobots." International Journal of Automation Technology 10, no. 4 (2016): 470–78. http://dx.doi.org/10.20965/ijat.2016.p0470.
Pełny tekst źródłaUvarov, Ilia V., Pavel S. Shlepakov, Artem E. Melenev, Kechun Ma, Vitaly B. Svetovoy, and Gijs J. M. Krijnen. "A Peristaltic Micropump Based on the Fast Electrochemical Actuator: Design, Fabrication, and Preliminary Testing." Actuators 10, no. 3 (2021): 62. http://dx.doi.org/10.3390/act10030062.
Pełny tekst źródłaQi, Chao, Naohiro Sugita, and Tadahiko Shinshi. "A Disposable Electromagnetic Bi-Directional Micropump Utilizing a Rotating Multi-Pole Ring Magnetic Coupling." Micromachines 13, no. 10 (2022): 1565. http://dx.doi.org/10.3390/mi13101565.
Pełny tekst źródłaSinghal,, Vishal, Suresh V. Garimella,, and Arvind Raman. "Microscale pumping technologies for microchannel cooling systems." Applied Mechanics Reviews 57, no. 3 (2004): 191–221. http://dx.doi.org/10.1115/1.1695401.
Pełny tekst źródłaShinha, Kenta, Wataru Nihei, Hiroko Nakamura, et al. "A Kinetic Pump Integrated Microfluidic Plate (KIM-Plate) with High Usability for Cell Culture-Based Multiorgan Microphysiological Systems." Micromachines 12, no. 9 (2021): 1007. http://dx.doi.org/10.3390/mi12091007.
Pełny tekst źródła