Gotowa bibliografia na temat „Microgrides”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microgrides”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Microgrides"

1

Albaker, Abdullah, Mansoor Alturki, Rabeh Abbassi, and Khalid Alqunun. "Zonal-Based Optimal Microgrids Identification." Energies 15, no. 7 (2022): 2446. http://dx.doi.org/10.3390/en15072446.

Pełny tekst źródła
Streszczenie:
Even though many studies have been deployed to determine the optimal planning and operation of microgrids, limited research was discussed to determine the optimal microgrids’ geographical boundaries. This paper proposes a zonal-based optimal microgrid identification model aiming at identifying the optimal microgrids topology in the current distribution systems through zoning the network into several clusters. In addition, the proposed model was developed as a mixed-integer linear programming (MILP) problem that identifies the optimal capacity and location of installing distributed energy resources (DERs), including but not limited to renewable energy resources and Battery Energy Storage Systems (BESS), within the determined microgrid’s boundaries. Moreover, it investigates the impact of incorporating the BESS in boosting the DERs’ penetration on the optimal centralized microgrid. Numerical simulations on the IEEE-33 bus test system demonstrate the features and effectiveness of the proposed model on identifying the optimal microgrid geographical boundaries on current distribution grids as well as its capability on defining the optimal sizes and locations of installing DERs within the microgrid’s zonal area.
Style APA, Harvard, Vancouver, ISO itp.
2

Malyshev, Evgeny Anatolyevich, and Evgeny Fedorovich Shcherba. "Overview of conceptualization and operational management of seaport microgrides." Актуальные проблемы экономики и управления, no. 1 (2022): 305–10. http://dx.doi.org/10.52899/978-5-88303-644-5_305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Silva, Vanderlei Aparecido, Alexandre Rasi Aoki, and Germano Lambert-Torres. "Optimal Day-Ahead Scheduling of Microgrids with Battery Energy Storage System." Energies 13, no. 19 (2020): 5188. http://dx.doi.org/10.3390/en13195188.

Pełny tekst źródła
Streszczenie:
Optimal scheduling is a requirement for microgrids to participate in current and future energy markets. Although the number of research articles on this subject is on the rise, there is a shortage of papers containing detailed mathematical modeling of the distributed energy resources available in a microgrid. To address this gap, this paper presents in detail how to mathematically model resources such as battery energy storage systems, solar generation systems, directly controllable loads, load shedding, scheduled intentional islanding, and generation curtailment in the microgrid optimal scheduling problem. The proposed modeling also includes a methodology to determine the availability cost of battery and solar systems assets. Simulations were carried out considering energy prices from an actual time-of-use tariff, costs based on real market data, and scenarios with scheduled islanding. Simulation results provide support to validate the proposed model. Data illustrate how energy arbitrage can reduce microgrid costs in a time-of-use tariff. Results also show how the microgrid’s self-sufficiency and the storage system’s capacity can impact the microgrid’s energy bill. The findings also bring out the need to consider the scheduled islanding event in the day-ahead optimization for microgrids.
Style APA, Harvard, Vancouver, ISO itp.
4

Azeem, Omar, Mujtaba Ali, Ghulam Abbas, et al. "A Comprehensive Review on Integration Challenges, Optimization Techniques and Control Strategies of Hybrid AC/DC Microgrid." Applied Sciences 11, no. 14 (2021): 6242. http://dx.doi.org/10.3390/app11146242.

Pełny tekst źródła
Streszczenie:
The depletion of natural resources and the intermittence of renewable energy resources have pressed the need for a hybrid microgrid, combining the benefits of both AC and DC microgrids, minimizing the overall deficiency shortcomings and increasing the reliability of the system. The hybrid microgrid also supports the decentralized grid control structure, aligning with the current scattered and concentrated load scenarios. Hence, there is an increasing need to explore and reveal the integration, optimization, and control strategies regarding the hybrid microgrid. A comprehensive study of hybrid microgrid’s performance parameters, efficiency, reliability, security, design flexibility, and cost-effectiveness is required. This paper discusses major issues regarding the hybrid microgrids, the integration of AC and DC microgrids, their security and reliability, the optimization of power generation and load management in different scenarios, the efficient management regarding uncertainty for renewable energy resources, the optimal placement of feeders, and the cost-effective control methodologies for the hybrid microgrid. The major research areas are briefly explained, aiming to find the research gap that can further improve the performance of the grid. In light of the recent trends in research, novel strategies are proposed that are found most effective and cost-friendly regarding the hybrid microgrid. This paper will serve as a baseline for future research, comparative analysis, and further development of novel techniques regarding hybrid microgrids.
Style APA, Harvard, Vancouver, ISO itp.
5

Twaisan, Kumail, and Necaattin Barışçı. "Integrated Distributed Energy Resources (DER) and Microgrids: Modeling and Optimization of DERs." Electronics 11, no. 18 (2022): 2816. http://dx.doi.org/10.3390/electronics11182816.

Pełny tekst źródła
Streszczenie:
In the near future, the notion of integrating distributed energy resources (DERs) to build a microgrid will be extremely important. The DERs comprise several technologies, such as diesel engines, micro turbines, fuel cells, photovoltaic, small wind turbines, etc. The coordinated operation and control of DER together with controllable loads and storage devices, such as flywheels, energy capacitors and batteries, are central to the concept of microgrid. Microgrids can operate interconnected to the main distribution grid, or in an islanded mode. This paper reviews the studies on microgrid technologies. The modeling and optimization methodologies of DERs are also presented and discussed in this paper along with system control approaches for DERs and microgrids. The review findings indicate that the use of multimodal indicators that take into consideration the financial, technological, ecological, and social elements of microgrids increased the community’s and stakeholders’ reaction capability. The microgrid structure under consideration comprises several types of combined heat power devices, boilers, and various types of DERs, including FC units, distributed generators, and MTs. Moreover, compared to grid-connected mode, the microgrid’s total operation cost is significantly higher in isolated mode.
Style APA, Harvard, Vancouver, ISO itp.
6

Singh, Shruti, and David Wenzhong Gao. "Improved Virtual Synchronous Generator Principle for Better Economic Dispatch and Stability in Grid-Connected Microgrids with Low Noise." Energies 16, no. 12 (2023): 4670. http://dx.doi.org/10.3390/en16124670.

Pełny tekst źródła
Streszczenie:
The proper operation of microgrids depends on Economic Dispatch. It satisfies all requirements while lowering the microgrids’ overall operating and generation costs. Since distributed generators constitute a large portion of microgrids, seamless communication between generators is essential. While guaranteeing a reliable microgrid operation, this should be achieved with the fewest losses as possible. The distributed generator technology introduces noise into the system by design. To find the best economic dispatch strategy, noise was considered in this research as a limitation in grid-connected microgrids. The microgrid’s performance was improved, and the proposed technique also showed increased resilience. A virtual synchronous generator (VSG) control approach is proposed with a noiseless consensus-based algorithm to improve the power quality of microgrids. Voltage and frequency regulation modules are the foundation of the VSG paradigm. The synchronous generator’s second-order equation (hidden-pole configuration) was also used to represent the voltage of the stator and rotor motion. This study compared changes in power, frequency, and voltage for the microgrid by utilizing the described control approach using MATLAB. According to the findings, this method aids in controlling load and noise variations and offers distributed generators an efficient control strategy.
Style APA, Harvard, Vancouver, ISO itp.
7

Vegunta, Sarat Chandra, Michael J. Higginson, Yashar E. Kenarangui, et al. "AC Microgrid Protection System Design Challenges—A Practical Experience." Energies 14, no. 7 (2021): 2016. http://dx.doi.org/10.3390/en14072016.

Pełny tekst źródła
Streszczenie:
Alternating current (AC) microgrids are the next step in the evolution of the electricity distribution systems. They can operate in a grid-tied or island mode. Depending on the services they are designed to offer, their grid-tied or island modes could have several sub-operational states and or topological configurations. Short-circuit current levels and protection requirements between different microgrid modes and configurations can vary significantly. Designing a microgrid’s protection system, therefore, requires a thorough understanding of all microgrid operational modes, configurations, transitional states, and how transitions between those modes are managed. As part of the microgrid protection design, speed and reliability of information flow between the microprocessor-based relays and the microgrid controller, including during microgrid failure modes, must be considered. Furthermore, utility protection practices and customer requirements are not always inclusive of the protection schemes that are unique to microgrids. These and other aspects contribute to the overall complexity and challenge of designing effective microgrid protection systems. Following a review of microgrid protection system design challenges, this paper discusses a few real-world experiences, based on the authors’ own engineering, design, and field experience, in using several approaches to address microgrid protection system design, engineering, and implementation challenges.
Style APA, Harvard, Vancouver, ISO itp.
8

Campo-Ossa, Daniel D., Enrique A. Sanabria-Torres, Jesus D. Vasquez-Plaza, Omar F. Rodriguez-Martinez, Oscar D. Garzon-Rivera, and Fabio Andrade. "Novel Rotated Virtual Synchronous Generator Control for Power-Sharing in Microgrids with Complex Line Impedance." Electronics 12, no. 10 (2023): 2156. http://dx.doi.org/10.3390/electronics12102156.

Pełny tekst źródła
Streszczenie:
Virtual synchronous generator (VSG) control is based on the fact that the line impedance in a microgrid is highly inductive. This assumption was made due to the emulation of the stator winding of an electrical machine. This concept can affect the controllability of a microgrid with complex line impedance, generating deviations in the chosen operation point. To overcome this issue, additional techniques must be implemented. This paper describes a novel mathematical approach that uses the power line characteristics in a microgrid to rotate the power control reference frame and proposes a new control method called a “Rotated Virtual Synchronous Generator” (RVSG). This RVSG control approach integrates the effect of complex impedance on the microgrid’s operation and adjusts the reference frame accordingly to improve the system’s stability and performance. The use of this proposed mathematical approach in microgrids allows the further emulation of virtual inertia in microgrids that lack inertia. Finally, a comparison between RVSG control and the classical virtual synchronous generator method is carried out to show that it allows the improvement of the transient power response, power quality, stability, and performance, mainly in microgrids with complex line impedance.
Style APA, Harvard, Vancouver, ISO itp.
9

Lanas, Fernando J., Francisco J. Martínez-Conde, Diego Alvarado, Rodrigo Moreno, Patricio Mendoza-Araya, and Guillermo Jiménez-Estévez. "Non-Strategic Capacity Withholding from Distributed Energy Storage within Microgrids Providing Energy and Reserve Services." Energies 13, no. 19 (2020): 5235. http://dx.doi.org/10.3390/en13195235.

Pełny tekst źródła
Streszczenie:
Microgrids have the potential to provide security and flexibility to power systems through the integration of a wide range of resources, including distributed energy storage, usually in the form of batteries. An aggregation of microgrids can enable the participation of these resources in the main system’s energy and ancillary services market. The traditional minimum-cost operation, however, can undermine microgrid’s ability to hold reserve capacity for operation in islanded mode and can rapidly degrade distributed batteries. This paper studies the impacts of various operational strategies from distributed energy storage plants on their revenues and on market prices, considering an array of microgrids that act in a synchronized fashion. The operational model minimizes the entire electric power system cost, considering transmission-connected and distributed energy resources, and capturing capacity degradation of batteries as part of the cost function. Additionally, microgrid-based, distributed batteries can provide energy arbitrage and both system-level and microgrid-level security services. Through several case studies, we demonstrate the economic impacts of distributed energy storage providing these services, including also capacity degradation. We also demonstrate the benefits of providing reserve services in terms of extra revenue and battery lifespan. Finally, we conclude that limitations in the provision of system-level services from distributed batteries due to degradation considerations and higher microgrid-level security requirements may, counterintuitively, increase system-level revenues for storage owners, if such degradation considerations and microgrid-level security requirements are adopted, at once, by a large number of microgrids, leading to unintended, non-strategic capacity withholding by distributed storage owners.
Style APA, Harvard, Vancouver, ISO itp.
10

Marchand, Sophie, Cristian Monsalve, Thorsten Reimann, et al. "Microgrid Systems: Towards a Technical Performance Assessment Frame." Energies 14, no. 8 (2021): 2161. http://dx.doi.org/10.3390/en14082161.

Pełny tekst źródła
Streszczenie:
A microgrid is an independent power system that can be connected to the grid or operated in an islanded mode. This single grid entity is widely used for furthering access to energy and ensuring reliable energy supply. However, if islanded, microgrids do not benefit from the high inertia of the main grid and can be subject to high variations in terms of voltage and frequency, which challenge their stability. In addition, operability and interoperability requirements, standards as well as directives have addressed main concerns regarding a microgrid’s reliability, use of distributed local resources and cybersecurity. Nevertheless, microgrid systems are quickly evolving through digitalization and have a large range of applications. Thus, a consensus over their testing must be further developed with the current technological development. Here, we describe existing technical requirements and assessment criteria for a microgrid’s main functionalities to foster harmonization of functionality-level testing and an international conception of system-level one. This framework is proposed as a reference document for assessment frame development serving both microgrid research and implementation for a comprehensive understanding of technical microgrid performance and its current assessment challenges, such as lack of standardization and evolving technology.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii