Artykuły w czasopismach na temat „Microfluidic processes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Microfluidic processes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Babikian, Sarkis, Brian Soriano, G. P. Li i Mark Bachman. "Laminate Materials for Microfluidic PCBs". International Symposium on Microelectronics 2012, nr 1 (1.01.2012): 000162–68. http://dx.doi.org/10.4071/isom-2012-ta54.
Pełny tekst źródłaBianchi, Jhonatan Rafael de Oliveira, Lucimara Gaziola de la Torre i Ana Leticia Rodrigues Costa. "Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type". Foods 12, nr 18 (9.09.2023): 3385. http://dx.doi.org/10.3390/foods12183385.
Pełny tekst źródłaAlexandre-Franco, María F., Rahmani Kouider, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa i Awf Al-Kassir. "Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview". Micromachines 15, nr 9 (6.09.2024): 1137. http://dx.doi.org/10.3390/mi15091137.
Pełny tekst źródłaBouhid de Aguiar, Izabella, i Karin Schroën. "Microfluidics Used as a Tool to Understand and Optimize Membrane Filtration Processes". Membranes 10, nr 11 (29.10.2020): 316. http://dx.doi.org/10.3390/membranes10110316.
Pełny tekst źródłaGiri, Kiran, i Chia-Wen Tsao. "Recent Advances in Thermoplastic Microfluidic Bonding". Micromachines 13, nr 3 (20.03.2022): 486. http://dx.doi.org/10.3390/mi13030486.
Pełny tekst źródłaTsur, Elishai Ezra. "Computer-Aided Design of Microfluidic Circuits". Annual Review of Biomedical Engineering 22, nr 1 (4.06.2020): 285–307. http://dx.doi.org/10.1146/annurev-bioeng-082219-033358.
Pełny tekst źródłaMarzban, Mostapha, Ehsan Yazdanpanah Moghadam, Javad Dargahi i Muthukumaran Packirisamy. "Microfabrication Bonding Process Optimization for a 3D Multi-Layer PDMS Suspended Microfluidics". Applied Sciences 12, nr 9 (4.05.2022): 4626. http://dx.doi.org/10.3390/app12094626.
Pełny tekst źródłaNaderi, Arman, Nirveek Bhattacharjee i Albert Folch. "Digital Manufacturing for Microfluidics". Annual Review of Biomedical Engineering 21, nr 1 (4.06.2019): 325–64. http://dx.doi.org/10.1146/annurev-bioeng-092618-020341.
Pełny tekst źródłaCha, Haotian, Hedieh Fallahi, Yuchen Dai, Dan Yuan, Hongjie An, Nam-Trung Nguyen i Jun Zhang. "Multiphysics microfluidics for cell manipulation and separation: a review". Lab on a Chip 22, nr 3 (2022): 423–44. http://dx.doi.org/10.1039/d1lc00869b.
Pełny tekst źródłaKurniawan, Yehezkiel Steven, Arif Cahyo Imawan, Sathuluri Ramachandra Rao, Keisuke Ohto, Wataru Iwasaki, Masaya Miyazaki i Jumina. "Microfluidics Era in Chemistry Field: A Review". Journal of the Indonesian Chemical Society 2, nr 1 (31.08.2019): 7. http://dx.doi.org/10.34311/jics.2019.02.1.7.
Pełny tekst źródłaBAI, BOFENG, ZHENGYUAN LUO, TIANJIAN LU i FENG XU. "NUMERICAL SIMULATION OF CELL ADHESION AND DETACHMENT IN MICROFLUIDICS". Journal of Mechanics in Medicine and Biology 13, nr 01 (10.01.2013): 1350002. http://dx.doi.org/10.1142/s0219519413500024.
Pełny tekst źródłaCarvalho, Bruna G., Bruno T. Ceccato, Mariano Michelon, Sang W. Han i Lucimara G. de la Torre. "Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application". Pharmaceutics 14, nr 1 (7.01.2022): 141. http://dx.doi.org/10.3390/pharmaceutics14010141.
Pełny tekst źródłaVitorino, Rui, Sofia Guedes, João Pinto da Costa i Václav Kašička. "Microfluidics for Peptidomics, Proteomics, and Cell Analysis". Nanomaterials 11, nr 5 (26.04.2021): 1118. http://dx.doi.org/10.3390/nano11051118.
Pełny tekst źródłaChen, Yu-Shih, Chun-Hao Huang, Ping-Ching Pai, Jungmok Seo i Kin Fong Lei. "A Review on Microfluidics-Based Impedance Biosensors". Biosensors 13, nr 1 (3.01.2023): 83. http://dx.doi.org/10.3390/bios13010083.
Pełny tekst źródłaLifton, Victor A. "Microfluidics: an enabling screening technology for enhanced oil recovery (EOR)". Lab on a Chip 16, nr 10 (2016): 1777–96. http://dx.doi.org/10.1039/c6lc00318d.
Pełny tekst źródłaAcosta-Cuevas, José M., Mario A. García-Ramírez, Gabriela Hinojosa-Ventura, Álvaro J. Martínez-Gómez, Víctor H. Pérez-Luna i Orfil González-Reynoso. "Surface Roughness Analysis of Microchannels Featuring Microfluidic Devices Fabricated by Three Different Materials and Methods". Coatings 13, nr 10 (25.09.2023): 1676. http://dx.doi.org/10.3390/coatings13101676.
Pełny tekst źródłaRoy, Sanjib, Ramesh Kumar, Argha Acooli, Snehagni Roy, Abhrajit Chatterjee, Sujoy Chattaraj, Jayato Nayak i in. "Transforming Nanomaterial Synthesis through Advanced Microfluidic Approaches: A Review on Accessing Unrestricted Possibilities". Journal of Composites Science 8, nr 10 (25.09.2024): 386. http://dx.doi.org/10.3390/jcs8100386.
Pełny tekst źródłaSavitri, Goparaju. "Advancement in Generation and Application of Microfluidic Chip Technology". International Journal of Pharmaceutical Sciences and Nanotechnology(IJPSN) 17, nr 2 (31.03.2024): 7277–98. http://dx.doi.org/10.37285/ijpsn.2024.17.2.9.
Pełny tekst źródłaLiu, Xing, i Xiaolin Zheng. "Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis". Sensors 24, nr 19 (30.09.2024): 6359. http://dx.doi.org/10.3390/s24196359.
Pełny tekst źródłaDai, Chuankai, Xiaoming Liu, Rongyu Tang, Jiping He i Tatsuo Arai. "A Review on Microfluidic Platforms Applied to Nerve Regeneration". Applied Sciences 12, nr 7 (30.03.2022): 3534. http://dx.doi.org/10.3390/app12073534.
Pełny tekst źródłaHamad, Eyad M., Ahmed Albagdady, Samer Al-Gharabli, Hamza Alkhadire, Yousef Alnaser, Hakim Shadid, Ahmed Abdo, Andreas Dietzel i Ala’aldeen Al-Halhouli. "Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics". Journal of Nanofluids 12, nr 7 (1.10.2023): 1868–79. http://dx.doi.org/10.1166/jon.2023.2102.
Pełny tekst źródłaMu, Ruojun, Nitong Bu, Jie Pang, Lin Wang i Yue Zhang. "Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications". Foods 11, nr 22 (20.11.2022): 3727. http://dx.doi.org/10.3390/foods11223727.
Pełny tekst źródłaKotz, Frederik, Markus Mader, Nils Dellen, Patrick Risch, Andrea Kick, Dorothea Helmer i Bastian Rapp. "Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate". Micromachines 11, nr 9 (19.09.2020): 873. http://dx.doi.org/10.3390/mi11090873.
Pełny tekst źródłaLundy, Terence. "Advanced Confocal Microscopy An Essential Technique for Microfluidics Development". Microscopy Today 14, nr 1 (styczeń 2006): 8–13. http://dx.doi.org/10.1017/s1551929500055127.
Pełny tekst źródłaMea, H., i J. Wan. "Microfluidics-enabled functional 3D printing". Biomicrofluidics 16, nr 2 (marzec 2022): 021501. http://dx.doi.org/10.1063/5.0083673.
Pełny tekst źródłaMumtaz, Zilwa, Zubia Rashid, Ashaq Ali, Afsheen Arif, Fuad Ameen, Mona S. AlTami i Muhammad Zubair Yousaf. "Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches". Biosensors 13, nr 6 (27.05.2023): 584. http://dx.doi.org/10.3390/bios13060584.
Pełny tekst źródłaRen, Liqing, i Dongqing Li. "Theoretical Studies of Microfluidic Dispensing Processes". Journal of Colloid and Interface Science 254, nr 2 (październik 2002): 384–95. http://dx.doi.org/10.1006/jcis.2002.8645.
Pełny tekst źródłaTang, Xiaoqing, Qiang Huang, Tatsuo Arai i Xiaoming Liu. "Cell pairing for biological analysis in microfluidic devices". Biomicrofluidics 16, nr 6 (grudzień 2022): 061501. http://dx.doi.org/10.1063/5.0095828.
Pełny tekst źródłaRenkó, József Bálint, Attila Bonyár i Péter János Szabó. "Development of Microfluidic Cell for Liquid Phase Layer Deposition Tracking". Acta Materialia Transylvanica 3, nr 2 (1.10.2020): 94–97. http://dx.doi.org/10.33924/amt-2020-02-08.
Pełny tekst źródłaErfantalab, Sobhan, Ali Hooshyar Zare i Amin Jenabi. "Ambient Temperature Dependence of Diffusion Rate in a Microfluidic Channel". Key Engineering Materials 605 (kwiecień 2014): 127–30. http://dx.doi.org/10.4028/www.scientific.net/kem.605.127.
Pełny tekst źródłaSmeraldo, Alessio, Alfonso Maria Ponsiglione, Paolo Antonio Netti i Enza Torino. "Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics". Biomedicines 9, nr 11 (27.10.2021): 1551. http://dx.doi.org/10.3390/biomedicines9111551.
Pełny tekst źródłaYip, Hon Ming, John C. S. Li, Kai Xie, Xin Cui, Agrim Prasad, Qiannan Gao, Chi Chiu Leung i Raymond H. W. Lam. "Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method". Scientific World Journal 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/608184.
Pełny tekst źródłaGelado, Sofia H., César Quilodrán-Casas i Loïc Chagot. "Enhancing Microdroplet Image Analysis with Deep Learning". Micromachines 14, nr 10 (22.10.2023): 1964. http://dx.doi.org/10.3390/mi14101964.
Pełny tekst źródłaBirendra Kumar Julee Choudhary, Sundararajan Ananiah Durai i Nabihah Ahmad. "Smart Microfluidic Devices for Point-Of-Care Applications". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 114, nr 1 (16.02.2024): 119–33. http://dx.doi.org/10.37934/arfmts.114.1.119133.
Pełny tekst źródłaZhang, Yuxin, Tim Cole, Guolin Yun, Yuxing Li, Qianbin Zhao, Hongda Lu, Jiahao Zheng, Weihua Li i Shi-Yang Tang. "Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators". Micromachines 12, nr 6 (23.05.2021): 604. http://dx.doi.org/10.3390/mi12060604.
Pełny tekst źródłaVogelaar, Alicia, Samantha Marcotte, Jiaqi Cheng, Benazir Oluoch i Jennica Zaro. "Use of Microfluidics to Prepare Lipid-Based Nanocarriers". Pharmaceutics 15, nr 4 (24.03.2023): 1053. http://dx.doi.org/10.3390/pharmaceutics15041053.
Pełny tekst źródłaPereponov, Dmitrii, Alexandra Scerbacova, Vitaly Kazaku, Murad Hajiyev, Michael A. Tarkhov, Evgeny Shilov i Alexey Cheremisin. "Application of microfluidics to optimize oil and gas field development technologies". Kazakhstan journal for oil & gas industry 1, nr 1 (13.04.2023): 57–73. http://dx.doi.org/10.54859/kjogi108639.
Pełny tekst źródłaWu, Haiwa, Jing Zhu, Yao Huang, Daming Wu i Jingyao Sun. "Microfluidic-Based Single-Cell Study: Current Status and Future Perspective". Molecules 23, nr 9 (13.09.2018): 2347. http://dx.doi.org/10.3390/molecules23092347.
Pełny tekst źródłaSarbashev, K. A., M. V. Nikiforova, D. P. Shulga, M. A. Shishkina i S. A. Tarasov. "Flow and mixing processes in a passive mixing microfluidic chip: Parameters’ estimation and colorimetric analysis". Fine Chemical Technologies 14, nr 5 (14.11.2019): 39–50. http://dx.doi.org/10.32362/2410-6593-2019-14-5-39-50.
Pełny tekst źródłaGao, Run Ze, Vivian Ngoc Tram Mai, Nicholas Levinski, Jacqueline Mary Kormylo, Robin Ward Murdock, Clark R. Dickerson i Carolyn L. Ren. "A novel air microfluidics-enabled soft robotic sleeve: Toward realizing innovative lymphedema treatment". Biomicrofluidics 16, nr 3 (maj 2022): 034101. http://dx.doi.org/10.1063/5.0079898.
Pełny tekst źródłaGarcia-Camprubi, Maria, Cristina Bengoechea-Cuadrado i Salvador Izquierdo. "Virtual Sensor Development for Continuous Microfluidic Processes". IEEE Transactions on Industrial Informatics 16, nr 12 (grudzień 2020): 7774–81. http://dx.doi.org/10.1109/tii.2020.2972111.
Pełny tekst źródłaMartin-Mayor, Alain, M. Mounir Bou-Ali, Maialen Aginagalde i Pedro Urteaga. "Microfluidic separation processes using the thermodiffusion effect". International Journal of Thermal Sciences 124 (luty 2018): 279–87. http://dx.doi.org/10.1016/j.ijthermalsci.2017.10.024.
Pełny tekst źródłaLiu, Yichen, Yongli Li, Andreas Hensel, Juergen J. Brandner, Kai Zhang, Xiaoze Du i Yongping Yang. "A review on emulsification via microfluidic processes". Frontiers of Chemical Science and Engineering 14, nr 3 (27.02.2020): 350–64. http://dx.doi.org/10.1007/s11705-019-1894-0.
Pełny tekst źródłaCaruso, Giuseppe, Nicolò Musso, Margherita Grasso, Angelita Costantino, Giuseppe Lazzarino, Fabio Tascedda, Massimo Gulisano, Susan M. Lunte i Filippo Caraci. "Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis". Micromachines 11, nr 6 (15.06.2020): 593. http://dx.doi.org/10.3390/mi11060593.
Pełny tekst źródłaDelgado, P., O. Oshinowo, M. E. Fay, C. A. Luna, A. Dissanayaka, P. Dorbala, A. Ravindran, L. Shen i D. R. Myers. "Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics". Biomicrofluidics 17, nr 1 (styczeń 2023): 014104. http://dx.doi.org/10.1063/5.0122771.
Pełny tekst źródłaShi, Jingyu, Yu Zhang i Mo Yang. "Recent development of microfluidics-based platforms for respiratory virus detection". Biomicrofluidics 17, nr 2 (marzec 2023): 024104. http://dx.doi.org/10.1063/5.0135778.
Pełny tekst źródłaZhang, Ge, Negar Nazari i Anthony R. Kovscek. "In Situ pH Measurement in Microfluidic Porous Media Indicated by Surfaces Functionalized with Polyaniline (PAni)". Colloids and Interfaces 8, nr 1 (16.01.2024): 9. http://dx.doi.org/10.3390/colloids8010009.
Pełny tekst źródłaAbrishamkar, Afshin, Azadeh Nilghaz, Maryam Saadatmand, Mohammadreza Naeimirad i Andrew J. deMello. "Microfluidic-assisted fiber production: Potentials, limitations, and prospects". Biomicrofluidics 16, nr 6 (grudzień 2022): 061504. http://dx.doi.org/10.1063/5.0129108.
Pełny tekst źródłaMidkiff, Daniel, i Adriana San-Miguel. "Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of C. elegans". Molecules 24, nr 23 (25.11.2019): 4292. http://dx.doi.org/10.3390/molecules24234292.
Pełny tekst źródłaVladisaljević, Goran T. "Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules". Micromachines 15, nr 8 (29.07.2024): 971. http://dx.doi.org/10.3390/mi15080971.
Pełny tekst źródła