Spis treści
Gotowa bibliografia na temat „Microenvironnement tumoral (TME)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microenvironnement tumoral (TME)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microenvironnement tumoral (TME)"
Traverse-Glehen, Alexandra, Laurent Martin, Camille Laurent, Peggy Dartigues, Barbara Burroni, Diane Damotte, Marie Parrens i in. "CD20low/CD68high a Promising Microenvironnement Profile Identifying Classical Hodgkin Lymphoma Patients with Poor Outcome a Lysa Study". Blood 142, Supplement 1 (28.11.2023): 3011. http://dx.doi.org/10.1182/blood-2023-174784.
Pełny tekst źródłaMangeat, Tristan, Matthieu Gracia, Pierre Martineau i Bruno Robert. "Stratégies de ciblage spécifique de la tumeur fondées sur les caractéristiques des antigènes tumoraux et du microenvironnement tumoral". médecine/sciences 36 (październik 2020): 56–60. http://dx.doi.org/10.1051/medsci/2020194.
Pełny tekst źródłaTraverse-Glehen, Alexandra, Diane Damotte, Peggy Dartigues, Laurent Martin, Marie Parrens, Hervé Guesquieres, Clementine Sarkozy i in. "The Combination of High Expression of CD68-Positive Tumor-Associated Macrophages and PET2-Positivity Predicts Unfavorable Outcome in Patients with Classical Hodgkin Lymphoma Treated in the Lysa AHL2011 Study". Blood 128, nr 22 (2.12.2016): 1825. http://dx.doi.org/10.1182/blood.v128.22.1825.1825.
Pełny tekst źródłaRozprawy doktorskie na temat "Microenvironnement tumoral (TME)"
Diaz, Herrero Alba. "Characterization of Tumor Immune Microenvironment in Human Diffuse Large B-cell Lymphoma". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL057.
Pełny tekst źródłaDiffuse Large B-cell Lymphoma (DLBCL) is the most prevalent subtype of non-Hodgkin's Lymphoma worldwide, characterized by an abnormal proliferation of mature B cells. It is an aggressive B-cell malignancy for which the current therapeutic strategies are still insufficient. The tumor microenvironment (TME) is the dynamic network of cells and all elements surrounding and interacting with the tumor. It plays an important role in cancer development, treatment response, and patient survival. Consequently, investigating the TME in DLBCL patients is crucial to discover the mechanisms leading to relapse and identify prognostic biomarkers. However, its diffuse tissue structure presents a challenge in elucidating the cellular organization and communication within the TME. The objective of my Ph.D. thesis is to conduct a comprehensive multimodal characterization of the immune cells within the DLBCL tumor microenvironment.To facilitate access to human samples, I developed and implemented an ethically approved clinical research protocol and a circuit of tissue and blood samples from patients with DLBCL treated at Saint Louis hospital, ensuring that the patient cohort reflects the heterogeneity of the disease.First, I performed a deep characterization of T lymphocytes, with special focus on describing their role within the DLBCL tissue. Indeed, Tumor-infiltrating T-cells (TILS) are key players in the NHL TME, presenting different subtypes and cell states. I apply multiparametric flow cytometry and high-dimensional spectral cytometry to investigate the complex landscape of T diversity in DLBCL biopsies, as well as their communication patterns with other immune cells in the tissue. The unsupervised analysis approach identified unexpected T-cell subtypes at a protein level, compared to tissue control and other lymphoproliferative disorders. Furthermore, the ligand-receptor expression analysis enabled the cell-cell communication study of those T-cell subpopulations within the TME context. Second, I aimed to characterize transcriptomic immune landscapes at a large scale within DLBCL tissue. However, RNA sequencing technologies characterize isolated cells from dissociated tissues with a loss of spatial context. I applied spatial transcriptomics, a cutting-edge technology that enables gene expression mapping in formalin-fixed paraffin-embedded samples of DLBCL biopsies, thus preserving their morphological information. I identified distinct anatomically restricted gene expression profiles in DLBCL samples, defying the historical notion of DLBCL diffuse architecture. These profiles can be classified into ecosystems that differ in cellular composition, functional patterns, and neighborhood characteristics. Moreover, their spatially resolved signatures classify patients with different overall survival revealing the prognostic potential of these spatial identities.Third, I evaluated the effects of altering the communication between NK cells and malignant B cells in DLBCL. I performed a functional in vitro assessment of a blocking antibody developed by the pharmaceutical company Servier. The functional assays demonstrated the effect of the molecular candidate in co-culture settings by improving cytotoxic functions of NK cells against tumor cells. These findings highlight the importance of targeting the interaction between effector cells and malignant B cells to develop effective therapies for DLBCL.This multidisciplinary project carried out on human samples provides a deep understanding of the heterogeneity of immune cells in DLBCL microenvironment at a protein and transcriptomic level while considering their spatial organization. Hence, this project holds significant therapeutic potential, by gaining insights into the disease heterogeneity and its impact on clinical outcome. This project could eventually lead to the discovery of new potential biomarkers and effective therapeutic strategies for DLBCL patients
Halse, Héloïse. "The Immunopathology of Primary and Metastatic tumors of the Liver". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASL126.
Pełny tekst źródłaAnti-cancer immunotherapy can be highly effective for certain patients, but its success depends on the affected organ. Individuals with primary liver cancer or liver metastases from colorectal cancer often have limited responses to immunotherapy. This is largely due to the immune environment within the liver. In this study, we examined how immune cells, particularly mast cells and neutrophils, impact outcomes in patients with colorectal cancer liver metastasis. We found that an increased presence of mast cells in tumors was associated with better outcomes for patients, while the presence of neutrophils was linked to a less favorable outcome. Furthermore, in the case of early-stage liver cancer, we discovered that patients could be grouped into different immune profiles, which could help personalize treatment. In summary, this study highlights the importance of understanding how the immune system reacts in the liver to enhance the effectiveness of immunotherapy for liver cancer and colorectal cancer. This information could also assist in identifying new therapeutic targets to improve treatments and patient survival in the future
Chaddad, Hassan. "Development of vascularized tumor spheroids mimicking the tumor environment : angiogenesis and hypoxia". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAJ001.
Pełny tekst źródłaThe tumor microenvironment, tumor angiogenesis, and hypoxia play a critical role in the tumor progression and therapy development of many cancers. Limitations in drug penetration, multidrug resistance phenomena, tumor vascularization, and oxygen deficiency are all parameters influencing drug effects. 3D cell culture allows to create a microenvironment that more closely mimics in vivo tissue architecture and function, thus, gene and protein expression modified by the 3D environment are further features that affect treatment outcome. In our first study, in order to develop a vascularized 3D model like in vivo tumors, we co-cultured 2D endothelial cells with 3D tumor cells. After 2 weeks of this combination, a vascular network was formed and organized with tubule-like structures presenting a lumen and expressing different angiogenic markers such as VEGF, CD31 and Collagen IV. In our second study, we developed an in vitro hypoxia model integrating the 3D environment and a hypoxia mimetic agent (CoCl2) to mimic the in vivo tumors and to show the importance of hypoxia in drug response and resistance. Results revealed that the best condition was the combination 3D+CoCl2 model, leading to overexpression oh hypoxia (GLUT1/3, VEGF) and drug resistance (ABCG2, MRP1) related genes. Taken together, angiogenesis and hypoxia are key factors for in vivo tumor microenvironment and they should be adopted in in vitro model design to better select and screen anticancer drugs
Cuny, Thomas. "New regulatory mechanisms in the growth of endocrine tumors : digestive neuroendocrine tumors, pitiutary adenomas". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5061.
Pełny tekst źródłaAlthough rare, endocrine tumors developed in Humans remain problematic, such as a better understanding of their regulatory mechanisms of growth represent a step forward to identify new therapeutical targets.In the first part of this thesis, we investigated the impact of the tumor microenvironment (TME), as defined by the factors surrounding the tumor primitive niche, on the growth of human digestive endocrine tumors. We, here, showed the occurrence of a reciprocal proliferation between human fibroblasts, a key cell within the TME, and human pancreatic neuroendocrine tumor cell lines, suggesting that human fibroblasts may constitue a new therapeutical target of interest in the TME of digestive endocrine tumors. In a second part, we showed that pegvisomant (PEG), a growth hormone receptor antagonist currently used in patients with GH-secreting pituitary adenoma, did not impact in vitro the proliferation rate of GH-secreting adenoma cells and therefore is suitable in patients with a persisting GH-secreting pituitary adenoma residue after surgery
Schnipper, Julie. "The impact of the acidic tumor microenvironment on ion channel expression and regulation, in the progression of pancreatic ductal adenocarcinoma". Electronic Thesis or Diss., Amiens, 2022. http://www.theses.fr/2022AMIE0071.
Pełny tekst źródłaThe transient receptor potential canonical 1 channel (TRPC1) is one of the most prominent nonselective cation channels involved in several diseases, including cancer progression. TRPCs can be activated by different physio-chemical stimuli of their surroundings, for instance, pH. Another hallmark of cancer is the variable extracellular pH landscape, notably in epithelial cancers such as pancreatic ductal adenocarcinoma (PDAC). PDAC progression and development are linked to the physiology and microenvironment of the exocrine pancreas. There are strong indications that PDAC aggressiveness is caused by the interplay between the tumor acidic microenvironment and ion channel dysregulation. However, this interaction has never been studied before. Here, we investigate if TRPC1 is involved in PDAC progression in the form of proliferation and migration and if the pH fluctuations of the acidic tumor microenvironment affect these processes. We found that TRPC1 was significantly upregulated in PDAC tumor tissue compared to adjacent normal tissue, and in the aggressive PDAC cell line PANC-1, compared to a duct-like cell line, hTERT-HPNE. To investigate if fluctuations of the acidic tumor microenvironment affect TRPC1 dysregulation, PANC-1 cells were incubated in a medium with a pH of 7.4 or 6.5 over 30 days, where after cells were recovered in pH 7.4 for 14 days (7.4R). Acid adaptation (6.5) reduced TRPC1 protein expression but favored its membrane localization compared to the control (7.4). pH recovery treatment (7.4R) resulted in an upregulation of TRPC1 expression with a high membrane localization, both in 2D and 3D models. We found that pH fluctuations and the siRNA-based knock-down (KD) of TRPC1 affected 2D and spheroid PANC-1 proliferation, respectively. In our 2D model, flow cytometry and cell cycle regulating protein immunoblotting showed that TRPC1 KD affected the progression through G0/G1 phase under all conditions and S-phase under control pH 7.4, which shifts to the G2/M phase in pH 6.5 and 7.4R. In addition, pH 6.5 enhanced, and the KD of TRPC1 decreased cell migration, respectively. Furthermore, we found that TRPC1 interacted strongly with PI3K under acidic conditions and CaM under all conditions, and a KD of TRPC1 decreased both this interaction and the activation of AKT and ERK1/2. Finally, basal Ca2+ entry was significantly reduced upon the KD of TRPC1 in pH 6.5 and 7.4R, where the entry was enhanced. The reduction of extracellular Ca2+ concentration resulted in an additional decrease in proliferation and migration of cells transfected with siTRPC1 growing in pH 6.5 and 7.4R, but not in normal pH 7.4 conditions.Collectively, our results show that TRPC1 is upregulated in PDAC tissue and cell lines. The acidic tumor microenvironment favors its plasma membrane localization, and its interaction with PI3K/CaM and Ca2+ entry leads to PDAC cells proliferation and migration. In addition, we performed an expression profile screening of ORAI channels, their partner STIM1, and a voltage-activated sodium channel (Nav1.6), and an acid-sensing ion channel (ASIC1) in PDAC tissues and cell lines, and investigated whether the acidic tumor microenvironment affects epigenetic regulation of ion channel expression. We found that ORAI3 was upregulated in PDAC tissue compared to normal tissue, where STIM1 and NaV1.6 were significantly downregulated. Moreover, ORAI3 was more localized in the plasma membrane in tumor tissue. Acid-adaptation had a differential effect on Ca2+ channel expression. Furthermore, our preliminary results show that the acidic tumor microenvironment does not affect the methylation levels of the ASIC1 or TRPC1 promoter region, but so some extend the SCN8A gene promoter
Flores, Violante Mario. "Role of the Bone Morphogenetic Proteins pathway in leukemic stem cell regulation and resistance in acute myeloid leukemia". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1118/document.
Pełny tekst źródłaAcute myeloid leukemias (AML) are heterogeneous hematological malignancies characterized by a clonal proliferation of myeloid blasts which infiltrate the bone marrow, blood and other organs. Identified as the most common type of acute leukemia in adults with 80% of cases, AML is associated with high relapse and poor prognosis where 70% of patients face mortality within one year after diagnosis. Leukemic stem cell (LSCs) presence has been related to resistance to chemotherapeutic agents and relapse in AML. The tumor microenvironment has been described for its key role regulating LSCs through the crosstalk of signaling pathways. Bone Morphogenetic Proteins (BMP) pathway is highly involved in hematopoietic stem cell (HSC) regulation, but has also been recognized to regulate LSCs. Here, we have identified high concentrations of BMP2 and BMP4 in bone marrow (BM) AML samples at diagnosis. Furthermore, we have identified for the first time a new signaling cascade, involving the binding of BMP4 to BMPR1A receptor, which induces the expression of ΔNp73 and NANOG. Activation of this signaling promotes a stem-like phenotype in leukemic cells. Therefore, we hypothesized that this signaling is responsible for the resistant capacity of leukemic cells to chemotherapy. In addition, we have reported BMPR1A/ΔNp73/NANOG as potential AML prognosis markers, due to their overexpression at diagnosis associated to an increased rate of relapse of AML patients within three years. When we analyzed AML samples at relapse, higher levels of ΔNp73 isoform were found compared to patients at diagnosis. Moreover, we have identified high expression of the BMPR1A receptor, ΔNp73, NANOG, SOX2 and ID1 in short-term resistant primary leukemic cells. These results correlate with what we observed in AML resistant cells, where BMPR1A, ΔNp73, NANOG and ID1 seem to be implicated in driving the resistant capacity of AML cells to drug therapy. Therefore, modulation and targeting of the BMP pathway elements and related genes identified with our study, represent a promising approach towards the development of new and more effective therapeutic strategies against AML
Baginska, Joanna. "Study of the involvement of autophagy in the acquisition of tumor resistance to Natural Killer-mediated lysis". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA11T088/document.
Pełny tekst źródłaNatural killer (NK) cells are effectors of the antitumor immunity, able to kill cancer cells through the release of the cytotoxic protease granzyme B. NK-based therapies have recently emerged as promising anticancer strategies. However, it is well established that hypoxic microenvironment interferes with the function of antitumor immune cells and constitutes a major obstacle for cancer immunotherapies. Recent studies demonstrated that autophagy is an important regulator of innate immune response in this microenvironment, but the mechanism by which autophagy regulates NK cell-mediated antitumor immune responses remains elusive. Here, we demonstrate that hypoxia impairs breast cancer cell susceptibility to NK-mediated lysis in vitro via the activation of autophagy. This impairment was not related to a defect in target cell recognition by NK cells but to the degradation of NK-derived granzyme B in autophagosomes of hypoxic cells. Inhibition of autophagy by targeting beclin1 (BECN1) restored granzyme B levels in hypoxic cells in vitro and induced tumor regression in vivo by facilitating NK-mediated tumor cell killing. Together, our data highlight autophagy as a mechanism underlying the resistance of hypoxic tumor cells to NK-mediated lysis and provides a cutting-edge advance in our understanding of the underlying mechanism. This study might pave the way for the formulation of more effective NK cell-based antitumor therapies
Thibaut, Ronan. "Bystander IFN-Y activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7067.
Pełny tekst źródłaTumor growth can be detected and restricted by the immune system. Innate immune cells, such as Natural Killer (NK) cells or invariant NK T (iNKT) cells, as well as adaptive immune cells such as cytotoxic CD8+ T cells, are able to kill tumor cells and cooperate towards tumor elimination. Their action can also be achieved through their secretion of cytokines like IFN-γ. IFN-γ has pleiotropic effects in the tumor microenvironment. It enhances Major Histocompatibility Complex (MHC) class I expression on tumor cells, which makes them more sensitive to T cell-mediated lysis. It can also reduce their proliferation or directly induce cell death but also act indirectly on the tumor microenvironment by reducing angiogenesis. Despite a good understanding of IFN-γ−mediated effects, little is known about its spatiotemporal activity in the tumor. During my Ph.D, I thus wondered whether IFN-γ specifically acted in discrete areas of the tumor around the immune cells that produce it, or whether it is able to diffuse and widely act in the whole tumor microenvironment. I also focused on understanding the duration to which tumor cells need to be exposed to IFN- γ in order for the cytokine to alter their function and phenotype. I was able to show that, despite being produced locally, T cell-derived IFN-γ had a broad bystander activity in the tumor. Using two-photon intravital imaging and a reporter of Signal Transducer and Activator of Transcription 1 (STAT1) nuclear translocation, I showed that IFN-γ signaling was occuring at distant sites from producing T cells. Those findings suggest an extensive diffusion of IFN- γ following its secretion which leads to a cyokine field bathing the entire tumor microenvironment Finally, my work demonstrated that sustained IFN-γ exposure is needed to alter tumor cell phenotype and functions
Devi, Priyanka. "Role and prognostic importance of regulatory T cells in lung cancer patients, according to the presence of tertiary lymphoid structures". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066345/document.
Pełny tekst źródłaTumor comprise complex niche of the immune and non-immune components. The complex interaction between the tumor cells with its environment turns into either eradication or the growth and metastasis of the tumors. We have previously demonstrated the role of TLS (tertiary lymphoid structures) in lung tumors, in protective anti-tumor responses. Despite of this, tumors do develop via exploiting the regulatory mechanisms, particularly includes, infiltration of the Tregs (regulatory T cells). The aim of thesis was to study the putative role of Tregs in regulating the immune responses in lung cancer. This study strongly demonstrates the presence of FoxP3+ Tregs in the TLS as well as non-TLS areas of the lung tumors. Tregs mainly exhibit central and effector memory phenotype expressing vast repertoire of the activation and immune checkpoint molecules. The gene expression and flow cytometry data showed that Tregs express the co-stimulatory and inhibitory markers which are known to be involved in the their activation and immune suppression. The high density of the Ti-Tregs either in TLS or in nonTLS areas is associated with the poor survival of the NSCLC patients. When combined with the density of TLS mature DC or B cells or CD8+ T cells, a group of patients with the low DC, B cells and CD8+ T cells but high Tregs densities, had the worst clinical outcome. This allowed, to identify the NSCLC patients with highest risk of death. Thus, it be concluded that the Tregs create the immunosuppressive environment in the lung tumors by acting in both TLS and nonTLS areas of the tumors and thus could be possible reason for the reduced survival of the lung cancer patients
Cadassou, Octavia. "Cancer and microenvironment : the functional interplay between intra- and extracellular nucleotide metabolisms". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1189/document.
Pełny tekst źródłaNucleotides play a major role in nucleic acids constitution and are involved in various cell phenomena. Indeed, intracellular ATP, GTP, AMP, GMP and their cyclic forms are components of cell signaling and define the energetic balance. Extracellularly, they also play multiple roles. Thus, when nucleotide pools are deregulated various processes are impacted. For example, a low availability of nucleotides supports genetic instability and aberrant levels of extracellular adenosine can lead to an immunosuppressive microenvironment. Interestingly, the cited parameters are among the Cancer Hallmarks described by Hanahan and Weinberg. These observations confirm the possibility of a key role of these molecules in this pathology. cN-II and CD73 are 5’-nucleotidases, involved in intra- and extracellular nucleotide metabolism respectively and have been identified as possible targets for new anti-cancer therapies. Nevertheless, very little is known about their biological roles on cancer cells and what parameters of cell biology could be impacted by such strategies. Considering the involvement of these purines in cell metabolism, we wondered what changes a decrease in cN-II and/orCD73 expressions or their silencing could trigger in cancer cells as well as in the interplay with their microenvironment.We studied cancer cell aggressiveness and the interplay with innate immune cells under cN-II and CD73 modulations. We observed that cN-II is involved in metabolic adaptability. The association of cN-II and CD73 invalidations results in glucose-metabolism-related gene modifications. CD73 can regulate migration-related genes expression but does not affect the process. cN-II is also involved in cell migration, via the COX-2/PGE2 axis. Again, these characteristics are accentuated when associated with CD73 deficiency. Here, cN-II and CD73 do not seem to be involved in cancer cell proliferation or in their interplay with a subset of innate immune cells