Artykuły w czasopismach na temat „Microelectromechanical systems”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Microelectromechanical systems.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Microelectromechanical systems”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Gabriel, K. J. "Microelectromechanical systems". Proceedings of the IEEE 86, nr 8 (1998): 1534–35. http://dx.doi.org/10.1109/5.704257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mehregany, M. "Microelectromechanical systems". IEEE Circuits and Devices Magazine 9, nr 4 (lipiec 1993): 14–22. http://dx.doi.org/10.1109/101.250229.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

MacDonald, Noel C. "SCREAM MicroElectroMechanical Systems". Microelectronic Engineering 32, nr 1-4 (wrzesień 1996): 49–73. http://dx.doi.org/10.1016/0167-9317(96)00007-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vasylenko, Mykola, i Maksym Mahas. "Microelectromechanical Gyrovertical". Electronics and Control Systems 1, nr 71 (27.06.2022): 16–21. http://dx.doi.org/10.18372/1990-5548.71.16818.

Pełny tekst źródła
Streszczenie:
Gyroscopic verticals (gyroverticals) are designed to determine the direction of the true vertical on moving objects. Being one of the devices of the orientation system of a moving object, they are used as sensors for the roll and pitch angles of an aircraft (or sensors of similar angles for other moving objects) and serve to create a platform stabilized in the horizon plane on a moving object. The electrical signals taken from the measuring axes of the device are used in flight, navigation, radar systems, visual indicators, etc. Gyroscopic stabilization systems are widely used as the basis of integrated management systems on aircraft and miniature unmanned aerial vehicles for generating signals proportional to the angular deviations of the aircraft in space in terms of roll and pitch angles and for stabilizing and controlling the position in space of optical equipment. At present, sensors based on the technologies of microelectromechanical systems are widely used in small aircraft. Their important advantage is small weight and size characteristics, and the main disadvantage is low accuracy. Such sensors are used in navigation systems and automatic control systems of aircraft. In particular, algorithms for calculating the orientation angles of an unmanned aerial vehicle are known, using information from microelectromechanical angular velocity sensors. However, due to large drifts, an error accumulates in time and, as a result, the operating time is limited.
Style APA, Harvard, Vancouver, ISO itp.
5

Bhat, K. N. "Micromachining for Microelectromechanical Systems". Defence Science Journal 48, nr 1 (1.01.1998): 5–19. http://dx.doi.org/10.14429/dsj.48.3863.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kal, Santiram. "Microelectromechanical Systems and Microsensors". Defence Science Journal 57, nr 3 (23.05.2007): 209–24. http://dx.doi.org/10.14429/dsj.57.1762.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gupta, Amita. "Advances in Microelectromechanical Systems". Defence Science Journal 59, nr 6 (24.11.2009): 555–56. http://dx.doi.org/10.14429/dsj.59.1579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Louizos, Louizos-Alexandros, Panagiotis G. Athanasopoulos i Kevin Varty. "Microelectromechanical Systems and Nanotechnology". Vascular and Endovascular Surgery 46, nr 8 (8.10.2012): 605–9. http://dx.doi.org/10.1177/1538574412462637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kristo, Blaine, Joseph C. Liao, Hercules P. Neves, Bernard M. Churchill, Carlo D. Montemagno i Peter G. Schulam. "Microelectromechanical systems in urology". Urology 61, nr 5 (maj 2003): 883–87. http://dx.doi.org/10.1016/s0090-4295(03)00032-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

(Rich) Pryputniewicz, R. J. "Progress in Microelectromechanical Systems". Strain 43, nr 1 (luty 2007): 13–25. http://dx.doi.org/10.1111/j.1475-1305.2007.00303.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Packard, Corinne E., Apoorva Murarka, Eric W. Lam, Martin A. Schmidt i Vladimir Bulović. "Contact-Printed Microelectromechanical Systems". Advanced Materials 22, nr 16 (22.04.2010): 1840–44. http://dx.doi.org/10.1002/adma.200903034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ansorge, Erik, Bertram Schmidt, Jan Sauerwald i Holger Fritze. "Langasite for microelectromechanical systems". physica status solidi (a) 208, nr 2 (23.09.2010): 377–89. http://dx.doi.org/10.1002/pssa.201026508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Sonetha, Vaibhavi, Poorvi Agarwal, Smeet Doshi, Ridhima Kumar i Bhavya Mehta. "Microelectromechanical Systems in Medicine". Journal of Medical and Biological Engineering 37, nr 4 (19.06.2017): 580–601. http://dx.doi.org/10.1007/s40846-017-0265-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Fechan, Andriy, Yuriy Khoverko, Vladyslav Dalyavskii i Taras Dyhdalovych. "Visualization of color label sensors in microelectromechanical systems". Computational Problems of Electrical Engineering 13, nr 2 (15.12.2023): 9–14. http://dx.doi.org/10.23939/jcpee2023.02.009.

Pełny tekst źródła
Streszczenie:
The article presents the design and technological features of creating color labels-sensors of microelectromechanical systems intended for monitoring physicochemical parameters under the conditions of high- level electromagnetic interference. The software module of the hardware and software complex for the visualization of spectral intensity by converting it into an RGB colour model has been created. The algorithm for carrying out the procedure for calculating the color rendering index is shown and the main parameters of temperature colors in a wide range of visible radiation waves are determined
Style APA, Harvard, Vancouver, ISO itp.
15

Xu, L., C. Zhu i L. Qin. "Microelectromechanical coupled dynamics". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, nr 10 (1.10.2006): 1589–600. http://dx.doi.org/10.1243/09544062jmes134.

Pełny tekst źródła
Streszczenie:
In this paper, a continuous body, electromechanical coupled dynamic model of the micro ring, in an electrical field has been presented and its equations of motion have been given. From the analysis of the system's energy, the electromechanical coupled force has been obtained. The non-linear electromechanical coupled dynamic equations has been linearized and by means of the linear equations, the natural frequencies and vibration modes of the micro ring have been investigated. The dynamic responses of the electrical system and its changes, along with its system parameters have been investigated. These results are useful in the design and manufacture of microelectromechanical systems and can offer some reference for nanomachines.
Style APA, Harvard, Vancouver, ISO itp.
16

Adeosun, Oluwatosin. "Microelectromechanical Systems Lab Simulation Tool". Journal of Purdue Undergraduate Research 4, nr 1 (12.08.2014): 74–75. http://dx.doi.org/10.5703/1288284315436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Liqin, Liu, Tang You Gang i Wu Zhiqiang. "Nonlinear Dynamics of Microelectromechanical Systems". Journal of Vibration and Control 12, nr 1 (styczeń 2006): 57–65. http://dx.doi.org/10.1177/1077546306061127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Bustillo, J. M., R. T. Howe i R. S. Muller. "Surface micromachining for microelectromechanical systems". Proceedings of the IEEE 86, nr 8 (1998): 1552–74. http://dx.doi.org/10.1109/5.704260.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Polla, D. L., i P. J. Schiller. "Integrated ferroelectric microelectromechanical systems (MEMS)". Integrated Ferroelectrics 7, nr 1-4 (luty 1995): 359–70. http://dx.doi.org/10.1080/10584589508220246.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mehregany, M., C. A. Zorman, S. Roy, A. J. Fleischman i N. Rajan. "Silicon carbide for microelectromechanical systems". International Materials Reviews 45, nr 3 (marzec 2000): 85–108. http://dx.doi.org/10.1179/095066000101528322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Zhou, Shu-Ang. "On forces in microelectromechanical systems". International Journal of Engineering Science 41, nr 3-5 (marzec 2003): 313–35. http://dx.doi.org/10.1016/s0020-7225(02)00207-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Biasotti, M., L. Pellegrino, E. Bellingeri, C. Bernini, A. S. Siri i D. Marrè. "All-Oxide Crystalline Microelectromechanical systems". Procedia Chemistry 1, nr 1 (wrzesień 2009): 839–42. http://dx.doi.org/10.1016/j.proche.2009.07.209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Soper, Steven A., Sean M. Ford, Shize Qi, Robin L. McCarley, Kevin Kelly i Michael C. Murphy. "Peer Reviewed: Polymeric Microelectromechanical Systems." Analytical Chemistry 72, nr 19 (październik 2000): 642 A—651 A. http://dx.doi.org/10.1021/ac0029511.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Bao, Minhang, i Weiyuan Wang. "Future of microelectromechanical systems (MEMS)". Sensors and Actuators A: Physical 56, nr 1-2 (sierpień 1996): 135–41. http://dx.doi.org/10.1016/0924-4247(96)01274-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Latif, Rhonira, Enrico Mastropaolo, Andy Bunting, Rebecca Cheung, Thomas Koickal, Alister Hamilton, Michael Newton i Leslie Smith. "Microelectromechanical systems for biomimetical applications". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, nr 6 (listopad 2010): C6N1—C6N6. http://dx.doi.org/10.1116/1.3504892.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Seppa, H., J. Kyynarainen i A. Oja. "Microelectromechanical systems in electrical metrology". IEEE Transactions on Instrumentation and Measurement 50, nr 2 (kwiecień 2001): 440–44. http://dx.doi.org/10.1109/19.918161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Chircov, Cristina, i Alexandru Mihai Grumezescu. "Microelectromechanical Systems (MEMS) for Biomedical Applications". Micromachines 13, nr 2 (22.01.2022): 164. http://dx.doi.org/10.3390/mi13020164.

Pełny tekst źródła
Streszczenie:
The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for fulfilling tasks normally carried out by macroscopic systems. Although their presence is found throughout all the aspects of daily life, recent years have witnessed countless research works involving the application of MEMS within the biomedical field, especially in drug synthesis and delivery, microsurgery, microtherapy, diagnostics and prevention, artificial organs, genome synthesis and sequencing, and cell manipulation and characterization. Their tremendous potential resides in the advantages offered by their reduced size, including ease of integration, lightweight, low power consumption, high resonance frequency, the possibility of integration with electrical or electronic circuits, reduced fabrication costs due to high mass production, and high accuracy, sensitivity, and throughput. In this context, this paper aims to provide an overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications, which have evolved in the past years.
Style APA, Harvard, Vancouver, ISO itp.
28

Hartzell, Allyson. "Optical microelectromechanical systems: designing for reliability". Journal of Micro/Nanolithography, MEMS, and MOEMS 6, nr 3 (1.07.2007): 033010. http://dx.doi.org/10.1117/1.2775458.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Yang, Yisong, Ruifeng Zhang i Le Zhao. "Dynamics of electrostatic microelectromechanical systems actuators". Journal of Mathematical Physics 53, nr 2 (luty 2012): 022703. http://dx.doi.org/10.1063/1.3684748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lee, Y. C., B. A. Parviz, J. A. Chiou i S. Chen. "Packaging for microelectromechanical and nanoelectromechanical systems". IEEE Transactions on Advanced Packaging 26, nr 3 (sierpień 2003): 217–26. http://dx.doi.org/10.1109/tadvp.2003.817973.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Elko, Gary W. "Small directional microelectromechanical systems microphone arrays". Journal of the Acoustical Society of America 133, nr 5 (maj 2013): 3317. http://dx.doi.org/10.1121/1.4805527.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Griggio, F., H. Kim, S. O. Ural, T. N. Jackson, K. Choi, R. L. Tutwiler i S. Trolier-Mckinstry. "Medical Applications of Piezoelectric Microelectromechanical Systems". Integrated Ferroelectrics 141, nr 1 (styczeń 2013): 169–86. http://dx.doi.org/10.1080/10584587.2012.694741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bryzek, J., A. Flannery i D. Skurnik. "Integrating microelectromechanical systems with integrated circuits". IEEE Instrumentation & Measurement Magazine 7, nr 2 (czerwiec 2004): 51–59. http://dx.doi.org/10.1109/mim.2004.1304566.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Anscombe, N. "Good things, small packages [microelectromechanical systems]". Manufacturing Engineer 83, nr 3 (1.06.2004): 10–13. http://dx.doi.org/10.1049/me:20040301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Riddle, A. "Nano- and microelectromechanical systems [Book Review]". IEEE Microwave Magazine 2, nr 4 (grudzień 2001): 84–85. http://dx.doi.org/10.1109/mmw.2001.969938.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Khuri‐Yakub, B. T. "Smart structures and microelectromechanical systems (MEMS)". Journal of the Acoustical Society of America 106, nr 4 (październik 1999): 2233. http://dx.doi.org/10.1121/1.427599.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Maluf, Nadim. "An Introduction to Microelectromechanical Systems Engineering". Measurement Science and Technology 13, nr 2 (16.01.2002): 229. http://dx.doi.org/10.1088/0957-0233/13/2/701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Tadigadapa, Srinivas. "Piezoelectric microelectromechanical systems — challenges and opportunities". Procedia Engineering 5 (2010): 468–71. http://dx.doi.org/10.1016/j.proeng.2010.09.148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Freidhoff, C. B., R. M. Young, S. Sriram, T. T. Braggins, T. W. O'Keefe, J. D. Adam, H. C. Nathanson i in. "Chemical sensing using nonoptical microelectromechanical systems". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, nr 4 (lipiec 1999): 2300–2307. http://dx.doi.org/10.1116/1.581764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gall, K., P. Kreiner, D. Turner i M. Hulse. "Shape-Memory Polymers for Microelectromechanical Systems". Journal of Microelectromechanical Systems 13, nr 3 (czerwiec 2004): 472–83. http://dx.doi.org/10.1109/jmems.2004.828727.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Ezawa, Motohiko. "Topological microelectromechanical systems". Physical Review B 103, nr 15 (26.04.2021). http://dx.doi.org/10.1103/physrevb.103.155425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, nr 2 (kwiecień 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3063826.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Chu, V., J. Gaspar i J. P. Conde. "Thin Film Microelectromechanical Systems". MRS Proceedings 715 (2002). http://dx.doi.org/10.1557/proc-715-a12.3.

Pełny tekst źródła
Streszczenie:
AbstractThis paper presents the fabrication and characterization of MEMS structures on glass substrates using thin film silicon technology and surface micromachining. The technology developed to process bridge and cantilever structures as well as the electromechanical characterization of these structures is discussed. This technology can enable the expansion of MEMS to applications requiring large area and/or flexible substrates. The main results for the characterization of the movement of the structures are as follows: (1) in the quasi-DC regime and at low applied voltages, the response is linear with the applied dc voltage. Using an electromechanical model which takes into account the constituent materials and geometry of the bilayer, it is possible to extract the deflection of the structures. This estimate suggests that it is possible to control the actuation of these structures to deflections on the sub-nanometric scale; (2) resonance frequencies of up to 20 MHz have been measured on hydrogenated amorphous silicon (a-Si:H) bridge structures with quality factors (Q) of 70-100 in air. The frequency depends inversely on the square of the structure length, as predicted by the mechanical model; and (3) using an integrated permanent magnet/magnetic sensor system, it is possible to measure the structure movement on-chip and to obtain an absolute calibration of the deflection of the structures.
Style APA, Harvard, Vancouver, ISO itp.
44

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, nr 1 (luty 2021): C2. http://dx.doi.org/10.1109/jmems.2020.3038296.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 31, nr 4 (sierpień 2022): C2. http://dx.doi.org/10.1109/jmems.2022.3189490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 31, nr 3 (czerwiec 2022): C2. http://dx.doi.org/10.1109/jmems.2022.3172163.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, nr 6 (grudzień 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3123770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, nr 3 (czerwiec 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3077790.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 30, nr 4 (sierpień 2021): C2. http://dx.doi.org/10.1109/jmems.2021.3095642.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

"Journal of Microelectromechanical Systems". Journal of Microelectromechanical Systems 31, nr 2 (kwiecień 2022): C2. http://dx.doi.org/10.1109/jmems.2022.3158710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii