Gotowa bibliografia na temat „Microelectromechanical system sensors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microelectromechanical system sensors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microelectromechanical system sensors"
Yen, Nguyen Trong, Nguyen Quoc Khanh i Ha Manh Thang. "A Calibration Algorithm for Microelectromechanical Inertial Sensors". Journal of the Russian Universities. Radioelectronics 25, nr 4 (29.09.2022): 90–104. http://dx.doi.org/10.32603/1993-8985-2022-25-4-90-104.
Pełny tekst źródłaVasylenko, Mykola, i Maksym Mahas. "Microelectromechanical Gyrovertical". Electronics and Control Systems 1, nr 71 (27.06.2022): 16–21. http://dx.doi.org/10.18372/1990-5548.71.16818.
Pełny tekst źródłaDas, Rajiv, i Rajesh Garg. "Global Environmental Microelectromechanical Systems Sensors: Advanced Weather Observation System". Defence Science Journal 59, nr 6 (24.11.2009): 659–65. http://dx.doi.org/10.14429/dsj.59.1572.
Pełny tekst źródłaKaneta, Ren, Takumi Hasegawa, Jun Kido, Takashi Abe i Masayuki Sohgawa. "Redesigned Microcantilevers for Sensitivity Improvement of Microelectromechanical System Tactile Sensors". Journal of Robotics and Mechatronics 34, nr 3 (20.06.2022): 677–82. http://dx.doi.org/10.20965/jrm.2022.p0677.
Pełny tekst źródłaYang, Xiaopeng, i Menglun Zhang. "Review of flexible microelectromechanical system sensors and devices". Nanotechnology and Precision Engineering 4, nr 2 (1.06.2021): 025001. http://dx.doi.org/10.1063/10.0004301.
Pełny tekst źródłaNovikov, P. V., V. N. Gerdi i V. V. Novikov. "Application of microelectromechanical sensors in the integrated navigation system of ground transport and agricultural technological vehicle". Izvestiya MGTU MAMI 10, nr 3 (15.09.2016): 25–31. http://dx.doi.org/10.17816/2074-0530-66898.
Pełny tekst źródłaOskin, Dmitry Aleksandrovich, Andrey Alekseevich Gorshkov, Sergey Aleksandrovich Klimenko i Nikolay Andreevich Pogodin. "Information and control system of collecting and transmitting data for unmanned vessel". Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2021, nr 2 (31.05.2021): 24–31. http://dx.doi.org/10.24143/2073-1574-2021-2-24-31.
Pełny tekst źródłaRen, Danyang, Yizhe Sun, Junhui Shi i Ruimin Chen. "A Review of Transparent Sensors for Photoacoustic Imaging Applications". Photonics 8, nr 8 (10.08.2021): 324. http://dx.doi.org/10.3390/photonics8080324.
Pełny tekst źródłaYi, Zhenxiang, Yishan Wang, Ming Qin i Qingan Huang. "Research on Dust Effect for MEMS Thermal Wind Sensors". Sensors 23, nr 12 (13.06.2023): 5533. http://dx.doi.org/10.3390/s23125533.
Pełny tekst źródłaFan, Shicheng, Lingju Meng, Li Dan, Wei Zheng i Xihua Wang. "Polymer Microelectromechanical System-Integrated Flexible Sensors for Wearable Technologies". IEEE Sensors Journal 19, nr 2 (15.01.2019): 443–50. http://dx.doi.org/10.1109/jsen.2018.2877747.
Pełny tekst źródłaRozprawy doktorskie na temat "Microelectromechanical system sensors"
Xu, Wenjun. "Carbon material based microelectromechanical system (MEMS): fabrication and devices". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39554.
Pełny tekst źródłaLi, Weizhuo. "Wavelength Multiplexing of MEMS Pressure and Temperature Sensors Using Fiber Bragg Gratings and Arrayed Waveguide Gratings". University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1123972586.
Pełny tekst źródłaKok, Wing Hang (Ronald). "Development of a wireless MEMS inertial system for health monitoring of structures". Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-11244-122741/.
Pełny tekst źródłaKeywords: angular rate; cantilever; wireless; RF; microcontroller; tilt and rotation; health monitoring; inertial sensors; MEMS. Includes bibliographical references (p. 139-145).
Lee, Jin-Hwan. "MEMS Needle-Type Multi-Analyte Microelectrode Array Sensors for In Situ Biological Applications". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1212146149.
Pełny tekst źródłaMangels, John Donald III, Syed Ammar Raza, Kevin Mueller, Namrah Habib, Josh Raymond, Daniel Brauer, Mohammed Azri Adb Rahim i in. "Micro-Air Vehicle Control Using Microelectromechanical Systems Sensors". Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625078.
Pełny tekst źródłaRaza, Syed Ammar, Kevin Mueller, Daniel Brauer, Namrah Habib, John Mangels, Azri Rahim, Joshua Raymond i in. "Micro-Air Vehicle Control Using Microelectromechanical Systems Sensors". Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625128.
Pełny tekst źródłaNeelisetti, Raghu Kisore Lim Alvin S. "Improving reliability of wireless sensor networks for target tracking using wireless acoustic sensors". Auburn, Ala., 2009. http://hdl.handle.net/10415/1931.
Pełny tekst źródłaLee, Wook. "Diffraction-based integrated optical readout for micromachined optomechanical sensors". Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09292006-115918/.
Pełny tekst źródłaF. Levent Degertekin, Committee Chair ; David S. Citrin, Committee Member ; Paul E. Hasler, Committee Member ; Peter J. Hesketh, Committee Member ; Zhiping Zhou, Committee Member.
Jacobson, Carl P. "Code Division Multiplexing of Fiber Optic and Microelectromechanical Systems (MEMS) Sensors". Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27486.
Pełny tekst źródłaPh. D.
Mendonça, Lucas Gonçalves Dias. "Desenvolvimento de um micro-transdutor acústico capacitivo". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-17102014-113303/.
Pełny tekst źródłaThis work presents a new process to fabricate an acoustic micro transducer to be used as a microsensor or a microactuator. The acoustic transducers are based on the electrostatic effect and consist on arrays of microfabricated capacitors. Such devices are commonly referred as CMUT, Capacitive Micromachined Ultrasonic Transducer. The bottom electrode (evaporated aluminum) of each capacitor is fixed on the surface of glass substrate, while the top electrode is a thin plate structure of copper or aluminum suspended on a cavity surrounded by posts. Since the top electrode is flexible, it bends toward the bottom electrode when a DC bias is applied. In this way, the top electrode can be forced to vibrate using an AC signal to be used as an acoustic wave emitter. Conversely, an ultrasound receiver is achieved as the measured capacitance changes when the DC biased top electrode moves following an external acoustic wave pressure. An innovation of this work is the use of the photoresist SU-8 to fabricate the post structures surrounding the cavities of the capacitive micro transducers. Its relatively simple processing steps and adequate mechanical properties make the SU-8 a convenient choice as an inexpensive structural material. The bottom part of the device is prepared on a glass substrate using an aluminum layer evaporated and etched to form the bottom electrodes. Then, SU-8 is spin coated, baked and etched adequately to form the posts surrounding the cavities. The top part is prepared by simply spinning an AZ-type photoresist on aluminum or copper plate. Finally, both halves are bonded under pressure on a hot plate. Several modeling and simulation analyses were performed in order to estimate the working performance of the micro transducers. The results of simulations helped to define the initial parameters and materials for the fabrication process. Samples submitted to a DC bias were initially characterized using an RCL meter in order to infer impedance, capacitance and phase angle behavior as a function of frequency (from 1 kHz to 1 MHz). Protection circuits were used in order to test CMUTs with high DC bias. These circuits allow to apply high DC bias, and an AC signal while other measuring equipments are protected. The device responded to application of mechanical loading, excitation by an AC signal and excitation by mechanical wave as well. The results showed that the device has good potential to be applied to the analysis of fluids.
Książki na temat "Microelectromechanical system sensors"
M, Newman Robert, Kraft Michael, Flewitt Andrew, Lima Monteiro, Davies William de, 1972- i Knovel (Firm), red. Smart MEMS and sensor systems. London: Imperial College Press, 2006.
Znajdź pełny tekst źródłaJ, Hesketh P., Electrochemical Society Sensor Division, Electrochemical Society. Dielectric Science and Technology Division., Electrochemical Society Electronics Division, Electrochemical Society Meeting i Sociedad Mexicana de Electroquimica. Congreso, red. Chemical sensors 7 -and- MEMS/NEMS 7. Pennington, N.J: Electrochemical Society, 2006.
Znajdź pełny tekst źródłaY, Yurish Sergey, Gomes, Maria Teresa S. R. i North Atlantic Treaty Organization. Scientific Affairs Division., red. Smart sensors and MEMS. Dordrecht: Kluwer Academic in cooperation with NATO Scientific Affairs Division, 2004.
Znajdź pełny tekst źródładen, Berg A. van, Bergveld P. 1940- i National Sensor Conference (3rd : 1998 : Universiteit Twente), red. Sensor technology in the Netherlands: State of the art : proceedings of the Dutch Sensor Conference held at the University of Twente, The Netherlands, 2--3 March 1998. Boston, Mass: Kluwer Academic Publishers, 1998.
Znajdź pełny tekst źródłaStephen, Beeby, red. MEMS mechanical sensors. Boston: Artech House, 2004.
Znajdź pełny tekst źródła(Society), SPIE, red. Micro- and nanotechnology sensors, systems and applications: 15-17 April 2009, Orlando, Florida, United States. Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaGeorge, Thomas F. Micro- and nanotechnology sensors, systems and applications: 15-17 April 2009, Orlando, Florida, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaNicola, Donato, d'Amico Arnaldo, Di Natale Corrado i SpringerLink (Online service), red. Sensors and Microsystems: AISEM 2010 Proceedings. Dordrecht: Springer Science+Business Media B.V., 2011.
Znajdź pełny tekst źródłaEurope, SPIE, SPIE (Society) i VDE/VDI-Gesellschaft für Mikroelektronik, Mikro- und Feinwerktechnik, red. Smart sensors, actuators, and MEMS IV: 4-6 May 2009, Dresden, Germany. Bellingham, Wash: SPIE, 2009.
Znajdź pełny tekst źródłaGeorge, Thomas F. Micro- and nanotechnology sensors, systems, and applications III: 25-29 April 2011, Orlando, Florida, United States. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Microelectromechanical system sensors"
de Silva, Clarence W. "Microelectromechanical Systems and Multisensor Systems". W Sensor Systems, 599–668. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371160-12.
Pełny tekst źródłaZhou, Zhaoying, Rong Zhu, Xu Fu i Ganghua Zhang. "Microelectromechanical Sensor-Based System". W Microsystems and Nanotechnology, 619–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-18293-8_17.
Pełny tekst źródłaSingh, Manmeet Mahinderjit, Yuto Lim i Asrulnizam Manaf. "Smart Home using Microelectromechanical Systems (MEMS) Sensor and Ambient Intelligences (SAHOMASI)". W Lecture Notes in Electrical Engineering, 557–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2622-6_54.
Pełny tekst źródła"Sensors". W Principles of Microelectromechanical Systems, 600–651. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649671.ch10.
Pełny tekst źródłaLangfelder, Giacomo, i Alessandro Tocchio. "Microelectromechanical systems integrating motion and displacement sensors". W Smart Sensors and MEMs, 395–428. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-102055-5.00015-2.
Pełny tekst źródłaLee, Sukhan, i Jaeyong Choi. "Microelectromechanical systems print heads for industrial printing". W Smart Sensors and MEMs, 429–60. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-102055-5.00016-4.
Pełny tekst źródłaPustan, Marius, Corina Birleanu, Cristian Dudescu i Jean-Claude Golinval. "Dynamic behavior of smart microelectromechanical systems in industrial applications". W Smart Sensors and MEMs, 377–94. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-102055-5.00014-0.
Pełny tekst źródłaHildenbrand, Jürgen, Andreas Greiner i Jan G. Korvink. "Microelectromechanical System-Based Micro Hot-Plate Devices". W Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies, 257–80. CRC Press, 2017. http://dx.doi.org/10.1201/b11487-10.
Pełny tekst źródłaTeresa, Maria, Leonardo Sileo i Massimo De. "Magnetic Field Sensors Based on Microelectromechanical Systems (MEMS) Technology". W Magnetic Sensors - Principles and Applications. InTech, 2012. http://dx.doi.org/10.5772/36468.
Pełny tekst źródłaVasudev, A., i S. Bhansali. "Microelectromechanical systems (MEMS) for in vivo applications". W Implantable Sensor Systems for Medical Applications, 331–58. Elsevier, 2013. http://dx.doi.org/10.1533/9780857096289.3.331.
Pełny tekst źródłaStreszczenia konferencji na temat "Microelectromechanical system sensors"
Khalilyulin, Ruslan, Thomas Steinhuber, Teresa Reutter, Gerhard Wachutka i Gabriele Schrag. "Modeling approach for full-system design and rapid hardware prototyping of microelectromechanical systems". W 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690514.
Pełny tekst źródłaVasylenko, M. P. "Testing system for unmanned aerial vehicles microelectromechanical sensors". W 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). IEEE, 2017. http://dx.doi.org/10.1109/apuavd.2017.8308804.
Pełny tekst źródłaLi, B., C. Keimel, G. Claydon, J. Park, A. D. Corwin i M. Aimi. "Power switch system based on Microelectromechanical switch". W TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969844.
Pełny tekst źródłaHarne, R. L., i K. W. Wang. "Mass Detection via Bifurcation Sensing With Multistable Microelectromechanical System". W ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3026.
Pełny tekst źródłaTakahashi, Ryo, Hidetoshi Miyashita, Kentaro Kinoshita i Sang-Seok Lee. "The effect of short beam length and gap distance on the resonance frequencies in Fishbone-shaped microelectromechanical system resonator". W 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808931.
Pełny tekst źródłaVavilova, N. B., A. A. Golovan, A. V. Kozlov, I. A. Papusha, V. A. Pavlinov, M. A. Shafeev, A. Yu Kulikova, A. A. Efimochkin i T. V. Rashkina. "Attitude and Heading Reference System Based on Microelectromechanical Sensors: Development and Testing Results". W 2023 30th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2023. http://dx.doi.org/10.23919/icins51816.2023.10168383.
Pełny tekst źródłaCosta Fernandes, Rafael, Paulo Sergio Silva, Felipe Ieda Fazanaro i Diego Paolo Ferruzzo Correa. "Attitude and Position Estimation in UAVs using Artificial Landmarks and MEMS Sensors in a Virtual Environment". W Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1656.
Pełny tekst źródłaDong, Xinjun, Dapeng Zhu, Yang Wang, Jerome P. Lynch i R. Andrew Swartz. "Design and Validation of Acceleration Measurement Using the Martlet Wireless Sensing System". W ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7611.
Pełny tekst źródłaYu, Hongyu, Lisong Ai, Mahsa Rouhanizadeh, Ryan Hamilton, Juliana Hwang, Ellis Meng, Eun Sok Kim i Tzung K. Hsiai. "Polymer-Based Cardiovascular Shear Stress Sensors". W ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38089.
Pełny tekst źródłaSokolov, Leonid V. "High-temperature microelectromechanical pressure sensors based on a SOI heterostructure for an electronic automatic aircraft engine control system". W Sixth International Symposium on Precision Engineering Measurements and Instrumentation. SPIE, 2010. http://dx.doi.org/10.1117/12.885688.
Pełny tekst źródłaRaporty organizacyjne na temat "Microelectromechanical system sensors"
Lee, Timothy C., i Luke J. Currano. Interfacing a Microelectromechanical System (MEMS) Sensor Array for Traumatic Brain Injury Detection with a Microcontroller. Fort Belvoir, VA: Defense Technical Information Center, październik 2012. http://dx.doi.org/10.21236/ada569540.
Pełny tekst źródła