Gotowa bibliografia na temat „Microchannel absorber”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microchannel absorber”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microchannel absorber"
Goel, Nitin, i D. Yogi Goswami. "Experimental Verification of a New Heat and Mass Transfer Enhancement Concept in a Microchannel Falling Film Absorber". Journal of Heat Transfer 129, nr 2 (26.05.2006): 154–61. http://dx.doi.org/10.1115/1.2402182.
Pełny tekst źródłaAlston, Mark E. "Optimal Microchannel Planar Reactor as a Switchable Infrared Absorber". MRS Advances 2, nr 14 (2017): 783–89. http://dx.doi.org/10.1557/adv.2017.112.
Pełny tekst źródłaSui, Zengguang, Wei Wu, Tian You, Zhanying Zheng i Michael Leung. "Performance investigation and enhancement of membrane-contactor microchannel absorber towards compact absorption cooling". International Journal of Heat and Mass Transfer 169 (kwiecień 2021): 120978. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.120978.
Pełny tekst źródłaKim, Yoon Jo, Yogendra K. Joshi i Andrei G. Fedorov. "Performance analysis of air-cooled microchannel absorber in absorptionbased miniature electronics cooling system". Journal of Mechanical Science and Technology 22, nr 2 (luty 2008): 338–49. http://dx.doi.org/10.1007/s12206-007-1034-5.
Pełny tekst źródłaGarcía-Hernando, N., M. Venegas i M. de Vega. "Experimental performance comparison of three flat sheet membranes operating in an adiabatic microchannel absorber". Applied Thermal Engineering 152 (kwiecień 2019): 835–43. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.129.
Pełny tekst źródłaSui, Zengguang, Chong Zhai i Wei Wu. "Swirling flow for performance improvement of a microchannel membrane-based absorber with discrete inclined grooves". International Journal of Refrigeration 130 (październik 2021): 382–91. http://dx.doi.org/10.1016/j.ijrefrig.2021.05.039.
Pełny tekst źródłaSui, Zengguang, Chong Zhai i Wei Wu. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration". Renewable Energy 187 (marzec 2022): 109–22. http://dx.doi.org/10.1016/j.renene.2022.01.052.
Pełny tekst źródłaMotamedi, Mahdi, Chia-Yang Chung, Mehdi Rafeie, Natasha Hjerrild, Fan Jiang, Haoran Qu i Robert A. Taylor. "Experimental Testing of Hydrophobic Microchannels, with and without Nanofluids, for Solar PV/T Collectors". Energies 12, nr 15 (6.08.2019): 3036. http://dx.doi.org/10.3390/en12153036.
Pełny tekst źródłaSui, Zengguang, Yunren Sui i Wei Wu. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning". Energy 240 (luty 2022): 122809. http://dx.doi.org/10.1016/j.energy.2021.122809.
Pełny tekst źródłaWei, Xinghua, Rijing Zhao, Siyuan Wu, Shouzhen Wang i Dong Huang. "Effect of rhombus mesh on 3D falling film flow characteristics over microchannel flat tube for LiBr (Lithium bromide) absorber". International Journal of Heat and Mass Transfer 209 (sierpień 2023): 124097. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124097.
Pełny tekst źródłaRozprawy doktorskie na temat "Microchannel absorber"
Cheng, Hao. "Etude d'absorption chimique du dioxyde de carbone : transfert de masse en écoulement diphasique dans un minicanal et conception d'un nouvel absorbeur multicanaux". Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4030.
Pełny tekst źródłaMicro/minichannel devices show great interests for their potential in efficient CO2 chemical absorption in the context of the carbon capture. This PhD these aims to characterize and investigate the transport mechanisms involved in chemical reactionaccompanied two-phase mass transfer in minichannel, and to design and develop novel miniaturized CO2 absorbers featuring intensified structures and optimized absorption performances. Firstly, bubble dynamics within a T-junction straight minichannel were optically observed, showing that the chemical reaction tends to suppress bubble breakup while promoting its shrinkage. Then, the velocity field and CO2 concentration field in the liquid slug were determined using PTV and pH-sensitive colorimetry, respectively, permitting the development of a modified unit-cell mass transfer model that incorporates the effects of flow recirculation and chemical reaction. Further enhancement was achieved by embedding a spiral distributed baffle structure into the minichannel, leading to a significant increase in mass transfer coefficient with only a minor rise in pressure drop. Finally, building on this intensification measure, a novel design for an integrated multichannel CO2 absorber was proposed, featuring paralleling units of conjugated double-helix cross minichannels (Codohec). A lab-scale module of this design was realized, and its absorption performance was comprehensively evaluated, highlighting various advantages including a high mass transfer coefficient, acceptable energy consumption, high remove rate, and large CO2 treatment capacity. These findings may provide new insights into the underlying transport mechanisms of chemical reaction-accompanied gas-liquid mass transfer and contribute to the design and optimization of highly efficient miniaturized CO2 absorbers for industry applications
Ammari, Ali. "Experimental Investigation of two-phase flow in microchannels. Co-current Absorption of Ammonia in Water to Design an Innovative Bubble Plate Absorber". Thesis, KTH, Skolan för kemivetenskap (CHE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156190.
Pełny tekst źródłaAmmari, Ali. "Experimental Investigation ofTwo-phase Flow in Microchannels“Co-current Absorption of Ammonia in Water to Design an Innovative Bubble Plate Absorber” : “Co-current Absorption of Ammonia in Water to Design an Innovative Bubble Plate Absorber”". Thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116779.
Pełny tekst źródłaStreszczenia konferencji na temat "Microchannel absorber"
Nagavarapu, Ananda Krishna, i Srinivas Garimella. "Falling-Film Absorption Around Microchannel Tube Banks". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63094.
Pełny tekst źródłaLiu, Yunshan, i Ebrahim Al Hajri. "Mass and Heat Transfer Characteristics of a Single-High Aspect Ratio Microchannel Absorber". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89787.
Pełny tekst źródłade Vega, Mercedes, Néstor García-Hernando i María Venegas. "Experimental measurement of mass transfer resistances in a membrane based adiabatic microchannel absorber". W The 4th World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icmfht19.104.
Pełny tekst źródłaJenks, Jeromy, i Vinod Narayanan. "Effect of Channel Geometry Variations on the Performance of a Microscale Bubble Absorber". W ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32445.
Pełny tekst źródłaJenks, Jeromy, i Vinod Narayanan. "An Experimental Study of Ammonia-Water Bubble Absorption in a Large Aspect Ratio Microchannel". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14036.
Pełny tekst źródłaChugh, Devesh, Rasool Nasr Isfahani, Kyle Gluesenkamp, Omar Abdelaziz i Saeed Moghaddam. "A Hybrid Absorption Cycle for Water Heating, Dehumidification, and Evaporative Cooling". W ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48816.
Pełny tekst źródłaCardenas, Ruander, i Vinod Narayanan. "A Numerical Study of Ammonia-Water Absorption Into a Constrained Microscale Film". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67021.
Pełny tekst źródłaKim, Yoon Jo, Yogendra K. Joshi i Andrei G. Fedorov. "Design of an Absorption Based Miniature Heat Pump System for Cooling of High Power Microprocessors". W ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33245.
Pełny tekst źródłaNasr Isfahani, Rasool, i Saeed Moghaddam. "Absorption Characteristics of Thin Lithium Bromide (LiBr) Solution Film Constrained by a Porous Hydrophobic Membrane". W ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73158.
Pełny tekst źródłaKelkar, Kanchan M., Suhas V. Patankar i Sukhvinder Kang. "Computational Method for Characterization of a Microchannel Heat Sink Involving Two-Phase Flow". W ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73119.
Pełny tekst źródła