Artykuły w czasopismach na temat „Microcantilever Beam”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Microcantilever Beam”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kim, Yun Young. "An evaluation technique for high-frequency dynamic behavior of a sandwich microcantilever beam". Journal of Sandwich Structures & Materials 21, nr 3 (22.05.2017): 1133–49. http://dx.doi.org/10.1177/1099636217708146.
Pełny tekst źródłaLIM, TEIK-CHENG. "ANALYSIS OF AUXETIC BEAMS AS RESONANT FREQUENCY BIOSENSORS". Journal of Mechanics in Medicine and Biology 12, nr 05 (grudzień 2012): 1240027. http://dx.doi.org/10.1142/s0219519412400271.
Pełny tekst źródłaMouro, João, Rui Pinto, Paolo Paoletti i Bruno Tiribilli. "Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization". Sensors 21, nr 1 (27.12.2020): 115. http://dx.doi.org/10.3390/s21010115.
Pełny tekst źródłaSong, Ya Qin, i Xiao Gang Yang. "Photothermal Response in Semiconducting Microcantilevers Produced by Laser Excitation". Advanced Materials Research 705 (czerwiec 2013): 81–84. http://dx.doi.org/10.4028/www.scientific.net/amr.705.81.
Pełny tekst źródłaLiu, Xing Fang, Guo Guo Yan, Zhan Wei Shen, Zheng Xin Wen, Jun Chen, Ya Wei He, Wan Shun Zhao i in. "Theoretical Calculation and Simulation for Microcantilevers Based on SiC Epitaxial Layers". Materials Science Forum 954 (maj 2019): 26–30. http://dx.doi.org/10.4028/www.scientific.net/msf.954.26.
Pełny tekst źródłaFormica, Giovanni, Walter Lacarbonara i Hiroshi Yabuno. "Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing". Nanomaterials 13, nr 11 (5.06.2023): 1808. http://dx.doi.org/10.3390/nano13111808.
Pełny tekst źródłaMunguia Cevantes, Jacobo Esteban, Juan Vicente Méndez Méndez, Hector Francisco Mendoza León, Miguel Ángel Alemán Arce, Salvador Mendoza Acevedo i Horacio Estrada Vázquez. "Si3N4 Young’s modulus measurement from microcantilever beams using a calibrated stylus profiler". Superficies y Vacío 30, nr 1 (25.03.2017): 10–13. http://dx.doi.org/10.47566/2017_syv30_1-010010.
Pełny tekst źródłaMojahedi, M., i M. Rahaeifard. "Static Deflection and Pull-In Instability of the Electrostatically Actuated Bilayer Microcantilever Beams". International Journal of Applied Mechanics 07, nr 06 (grudzień 2015): 1550090. http://dx.doi.org/10.1142/s1758825115500908.
Pełny tekst źródłaNsubuga, Lawrence, Lars Duggen, Tatiana Lisboa Marcondes, Simon Høegh, Fabian Lofink, Jana Meyer, Horst-Günter Rubahn i Roana de Oliveira Hansen. "Gas Adsorption Response of Piezoelectrically Driven Microcantilever Beam Gas Sensors: Analytical, Numerical, and Experimental Characterizations". Sensors 23, nr 3 (17.01.2023): 1093. http://dx.doi.org/10.3390/s23031093.
Pełny tekst źródłaWong, WaiChi, HingWah Lee, Ishak A. Azid i K. N. Seetharamu. "Creep analysis of bimaterial microcantilever beam for sensing device using artificial neural network (ANN)". ASEAN Journal on Science and Technology for Development 23, nr 1&2 (30.10.2017): 89. http://dx.doi.org/10.29037/ajstd.95.
Pełny tekst źródłaLiu, Xiaochen, Lihao Wang, Junyuan Zhao, Yinfang Zhu, Jinling Yang i Fuhua Yang. "Enhanced Binding Efficiency of Microcantilever Biosensor for the Detection of Yersinia". Sensors 19, nr 15 (29.07.2019): 3326. http://dx.doi.org/10.3390/s19153326.
Pełny tekst źródłaSADER, JOHN E., THOMAS P. BURG i SCOTT R. MANALIS. "Energy dissipation in microfluidic beam resonators". Journal of Fluid Mechanics 650 (22.03.2010): 215–50. http://dx.doi.org/10.1017/s0022112009993521.
Pełny tekst źródłaMajumdar, Arun. "Bioassays Based on Molecular Nanomechanics". Disease Markers 18, nr 4 (2002): 167–74. http://dx.doi.org/10.1155/2002/856032.
Pełny tekst źródłaHosaka, Hiroshi, i Kiyoshi Itao. "Coupled Vibration of Microcantilever Array Induced by Airflow Force". Journal of Vibration and Acoustics 124, nr 1 (1.07.2001): 26–32. http://dx.doi.org/10.1115/1.1421054.
Pełny tekst źródłaChen, Yongzhang, Yiwen Zheng, Haibing Xiao, Dezhi Liang, Yufeng Zhang, Yongqin Yu, Chenlin Du i Shuangchen Ruan. "Optical Fiber Probe Microcantilever Sensor Based on Fabry–Perot Interferometer". Sensors 22, nr 15 (1.08.2022): 5748. http://dx.doi.org/10.3390/s22155748.
Pełny tekst źródłaHull, Katherine L., Younane N. Abousleiman, Yanhui Han, Ghaithan A. Al-Muntasheri, Peter Hosemann, S. Scott Parker i Cameron B. Howard. "Nanomechanical Characterization of the Tensile Modulus of Rupture for Kerogen-Rich Shale". SPE Journal 22, nr 04 (13.02.2017): 1024–33. http://dx.doi.org/10.2118/177628-pa.
Pełny tekst źródłaAbbasi, Mohammad, i Seyed E. Afkhami. "Resonant Frequency and Sensitivity of a Caliper Formed With Assembled Cantilever Probes Based on the Modified Strain Gradient Theory". Microscopy and Microanalysis 20, nr 6 (10.09.2014): 1672–81. http://dx.doi.org/10.1017/s1431927614013117.
Pełny tekst źródłaZhang, Tong-Yi, Ming-Hao Zhao i Cai-Fu Qian. "Effect of substrate deformation on the microcantilever beam-bending test". Journal of Materials Research 15, nr 9 (wrzesień 2000): 1868–71. http://dx.doi.org/10.1557/jmr.2000.0270.
Pełny tekst źródłaArscott, Steve, Bernard Legrand, Lionel Buchaillot i Alison E. Ashcroft. "A silicon beam-based microcantilever nanoelectrosprayer". Sensors and Actuators B: Chemical 125, nr 1 (lipiec 2007): 72–78. http://dx.doi.org/10.1016/j.snb.2007.01.040.
Pełny tekst źródłaAbbasi, Mohammad, i Ardeshir Karami Mohammadi. "Study of the sensitivity and resonant frequency of the flexural modes of an atomic force microscopy microcantilever modeled by strain gradient elasticity theory". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, nr 8 (10.10.2013): 1299–310. http://dx.doi.org/10.1177/0954406213507918.
Pełny tekst źródłaPreethi, A. Angelin Peace, i P. Karthigaikumar. "Micro-machined silicon accelerometer with piezoresistive SCR implementation for glucolysis". International Journal of Wavelets, Multiresolution and Information Processing 18, nr 01 (31.05.2019): 1941013. http://dx.doi.org/10.1142/s0219691319410133.
Pełny tekst źródłaSilveira, B. M., J. H. Belo, R. Pinto, J. A. Silva, T. D. Ferreira, A. L. Pires, V. Chu, J. P. Conde, O. Frazão i A. M. Pereira. "Magnetostriction in Amorphous Co66Fe34 Microcantilevers Fabricated with Hydrogenated Amorphous Silicon". EPJ Web of Conferences 233 (2020): 05003. http://dx.doi.org/10.1051/epjconf/202023305003.
Pełny tekst źródłaHocheng, H., K. S. Kao i W. Fang. "Fatigue life of a microcantilever beam in bending". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22, nr 6 (2004): 3143. http://dx.doi.org/10.1116/1.1821502.
Pełny tekst źródłaKim, Seunghyun, Tim Gustafson, Danny C. Richards, Weisheng Hu i Gregory P. Nordin. "Microcantilever deflection compensation with focused ion beam exposure". Journal of Micromechanics and Microengineering 21, nr 8 (30.06.2011): 085007. http://dx.doi.org/10.1088/0960-1317/21/8/085007.
Pełny tekst źródłaLee, Jung A., Jae Young Yun, Seung Seob Lee i Kwang Cheol Lee. "A Novel Microcantilever Device with Nano-Interdigitated Electrodes (Nano-IDEs) for Biosensing Applications". Key Engineering Materials 326-328 (grudzień 2006): 1359–62. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1359.
Pełny tekst źródłaWu, M. C., J. S. Chang, K. C. Wu, C. H. Lin i C. Y. Wu. "The Effect of Flow Velocity on Microcantilever-Based Biosensors". Journal of Mechanics 23, nr 4 (grudzień 2007): 353–58. http://dx.doi.org/10.1017/s1727719100001404.
Pełny tekst źródłaQi, Chenkun, Feng Gao, Han-Xiong Li, Xianchao Zhao i Liming Deng. "A neural network-based distributed parameter model identification approach for microcantilever". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, nr 20 (9.08.2016): 3663–76. http://dx.doi.org/10.1177/0954406215615626.
Pełny tekst źródłaAnthony, C. J., G. Torricelli, P. D. Prewett, D. Cheneler, C. Binns i A. Sabouri. "Effect of focused ion beam milling on microcantilever loss". Journal of Micromechanics and Microengineering 21, nr 4 (24.03.2011): 045031. http://dx.doi.org/10.1088/0960-1317/21/4/045031.
Pełny tekst źródłaLiu, Yun, i Yin Zhang. "Stiction of Flexural MEMS Structures". Applied Mechanics and Materials 190-191 (lipiec 2012): 794–800. http://dx.doi.org/10.4028/www.scientific.net/amm.190-191.794.
Pełny tekst źródłaVoiculescu, I. R., M. E. Zaghloul, R. A. McGill i J. F. Vignola. "Modelling and measurements of a composite microcantilever beam for chemical sensing applications". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, nr 10 (1.10.2006): 1601–8. http://dx.doi.org/10.1243/09544062jmes150.
Pełny tekst źródłaArmstrong, David E. J., Angus J. Wilkinson i Steve G. Roberts. "Measuring anisotropy in Young’s modulus of copper using microcantilever testing". Journal of Materials Research 24, nr 11 (listopad 2009): 3268–76. http://dx.doi.org/10.1557/jmr.2009.0396.
Pełny tekst źródłaGuo, Kai, Bo Jiang, Bingrui Liu, Xingeng Li, Yaping Wu, Shuang Tian, Zhiyue Gao i in. "Study on the progress of piezoelectric microcantilever beam micromass sensor". IOP Conference Series: Earth and Environmental Science 651 (10.02.2021): 022091. http://dx.doi.org/10.1088/1755-1315/651/2/022091.
Pełny tekst źródłaLin, Y. C., H. Hocheng, W. L. Fang i R. Chen. "Fabrication and Fatigue Testing of an Electrostatically Driven Microcantilever Beam". Materials and Manufacturing Processes 21, nr 1 (styczeń 2006): 75–80. http://dx.doi.org/10.1080/amp-20006597.
Pełny tekst źródłaManoubi, I., F. Najar, S. Choura i A. H. Nayfeh. "Nonlinear Dynamical analysis of an AFM tapping mode microcantilever beam". MATEC Web of Conferences 1 (2012): 04002. http://dx.doi.org/10.1051/matecconf/20120104002.
Pełny tekst źródłaHong, Hocheng, Jeng-Nan Hung i Yunn-Horng Guu. "Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending". Japanese Journal of Applied Physics 47, nr 6 (20.06.2008): 5256–61. http://dx.doi.org/10.1143/jjap.47.5256.
Pełny tekst źródłaSchultz, Joshua A., Stephen M. Heinrich, Fabien Josse, Nicholas J. Nigro, Isabelle Dufour, Luke A. Beardslee i Oliver Brand. "Timoshenko beam effects in lateral‐mode microcantilever‐based sensors in liquids". Micro & Nano Letters 8, nr 11 (listopad 2013): 762–65. http://dx.doi.org/10.1049/mnl.2013.0395.
Pełny tekst źródłaMuto, Shogo, Wataru Hirata, Shinji Fujita, Kazuya Akashi, Yasuhiro Iijima i Masanori Daibo. "Micromechanical Property Evaluation Of REBCO Coated Conductors Using Microcantilever Beam Method". IEEE Transactions on Applied Superconductivity 30, nr 4 (czerwiec 2020): 1–4. http://dx.doi.org/10.1109/tasc.2020.2975755.
Pełny tekst źródłaSubhashini, S., i A. Vimala Juliet. "Micro Cantilever CO2 Gas Sensor Based on Mass". Applied Mechanics and Materials 766-767 (czerwiec 2015): 528–33. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.528.
Pełny tekst źródłaNagase, Masao, Hiroshi Takahashi, Yoshiharu Shirakawabe i Hideo Namatsu. "Nano-Four-Point Probes on Microcantilever System Fabricated by Focused Ion Beam". Japanese Journal of Applied Physics 42, Part 1, No. 7B (30.07.2003): 4856–60. http://dx.doi.org/10.1143/jjap.42.4856.
Pełny tekst źródłaNguyen, Quoc Chi, i Slava Krylov. "Nonlinear tracking control of vibration amplitude for a parametrically excited microcantilever beam". Journal of Sound and Vibration 338 (marzec 2015): 91–104. http://dx.doi.org/10.1016/j.jsv.2014.10.029.
Pełny tekst źródłaBourouina, Hicham, Réda Yahiaoui, Elmar Yusifli, Mohammed El Amine Benamar, Kamal Ghoumid i Guillaume Herlem. "Shear effect on dynamic behavior of microcantilever beam with manufacturing process defects". Microsystem Technologies 23, nr 7 (19.07.2016): 2537–42. http://dx.doi.org/10.1007/s00542-016-3078-x.
Pełny tekst źródłaMOJAHEDI, M., M. T. AHMADIAN i K. FIROOZBAKHSH. "OSCILLATORY BEHAVIOR OF AN ELECTROSTATICALLY ACTUATED MICROCANTILEVER GYROSCOPE". International Journal of Structural Stability and Dynamics 13, nr 06 (2.07.2013): 1350030. http://dx.doi.org/10.1142/s0219455413500302.
Pełny tekst źródłaLin, Chiao-Chi, Weileun Fang, Hung-Yi Lin, Chun-Hway Hsueh i Sanboh Lee. "Measurements of residual stresses in Al film/silicon nitride substrate microcantilever beam systems". Journal of Materials Research 26, nr 10 (19.05.2011): 1279–84. http://dx.doi.org/10.1557/jmr.2011.111.
Pełny tekst źródłaAbbasi, Mohammad. "Size Dependent Vibration Behavior of an AFM with Sidewall and Top-Surface Probes Based on the Strain Gradient Elasticity Theory". International Journal of Applied Mechanics 07, nr 03 (czerwiec 2015): 1550046. http://dx.doi.org/10.1142/s1758825115500465.
Pełny tekst źródłaHeidari, Mohammad, Yaghoub Tadi Beni i Hadi Homaei. "Estimation of Static Pull-In Instability Voltage of Geometrically Nonlinear Euler-Bernoulli Microbeam Based on Modified Couple Stress Theory by Artificial Neural Network Model". Advances in Artificial Neural Systems 2013 (26.12.2013): 1–10. http://dx.doi.org/10.1155/2013/741896.
Pełny tekst źródłaMishra, Rohit, Wilfried Grange i Martin Hegner. "Rapid and Reliable Calibration of Laser Beam Deflection System for Microcantilever-Based Sensor Setups". Journal of Sensors 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/617386.
Pełny tekst źródłaVoiculescu, I., M. E. Zaghloul, R. A. McGill, E. J. Houser i G. K. Fedder. "Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons". IEEE Sensors Journal 5, nr 4 (sierpień 2005): 641–47. http://dx.doi.org/10.1109/jsen.2005.851016.
Pełny tekst źródłaSchultz, Joshua A., Stephen M. Heinrich, Fabien Josse, Isabelle Dufour, Nicholas J. Nigro, Luke A. Beardslee i Oliver Brand. "Lateral-Mode Vibration of Microcantilever-Based Sensors in Viscous Fluids Using Timoshenko Beam Theory". Journal of Microelectromechanical Systems 24, nr 4 (sierpień 2015): 848–60. http://dx.doi.org/10.1109/jmems.2014.2354596.
Pełny tekst źródłaGHADERI, R., i M. H. KORAYEM. "SENSITIVITY ANALYSIS OF VIBRATING MOTION OF NONUNIFORM AFM PIEZOELECTRIC MICROCANTILEVER". Latin American Applied Research - An international journal 45, nr 4 (30.10.2015): 271–77. http://dx.doi.org/10.52292/j.laar.2015.408.
Pełny tekst źródłaTamayo, Javier, Valerio Pini, Prisicila Kosaka, Nicolas F. Martinez, Oscar Ahumada i Montserrat Calleja. "Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy". Nanotechnology 23, nr 31 (13.07.2012): 315501. http://dx.doi.org/10.1088/0957-4484/23/31/315501.
Pełny tekst źródła