Gotowa bibliografia na temat „MICROBIALLY”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „MICROBIALLY”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "MICROBIALLY"
Allsup, Cassandra M., Isabelle George i Richard A. Lankau. "Shifting microbial communities can enhance tree tolerance to changing climates". Science 380, nr 6647 (26.05.2023): 835–40. http://dx.doi.org/10.1126/science.adf2027.
Pełny tekst źródłaWang, Dongsheng, Fang Guan, Chao Feng, Krishnamurthy Mathivanan, Ruiyong Zhang i Wolfgang Sand. "Review on Microbially Influenced Concrete Corrosion". Microorganisms 11, nr 8 (12.08.2023): 2076. http://dx.doi.org/10.3390/microorganisms11082076.
Pełny tekst źródłaPacton, M., S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osintcev i C. Vasconcelos. "The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia – paleoenvironmental implications". Biogeosciences 10, nr 9 (27.09.2013): 6115–30. http://dx.doi.org/10.5194/bg-10-6115-2013.
Pełny tekst źródłaPacton, M., S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osinzev i C. Vasconcelos. "The role of microorganisms on the formation of a stalactite in Botovskaya Cave, Siberia – palaeoenvironmental implications". Biogeosciences Discussions 10, nr 4 (8.04.2013): 6563–603. http://dx.doi.org/10.5194/bgd-10-6563-2013.
Pełny tekst źródłaSchindler, Frank, Lutz Merbold, Stefan Karlsson, Anna Rosa Sprocati i Erika Kothe. "Seasonal change of microbial activity in microbially aided bioremediation". Journal of Geochemical Exploration 174 (marzec 2017): 4–9. http://dx.doi.org/10.1016/j.gexplo.2016.04.001.
Pełny tekst źródłaJiang, Weijian, Wen Yi i Lei Zhou. "Fibre-Microbial Curing Tests and Slope Stability Analysis". Applied Sciences 13, nr 12 (12.06.2023): 7051. http://dx.doi.org/10.3390/app13127051.
Pełny tekst źródłaEmmert, Simon, Katherine Davis, Robin Gerlach i Holger Class. "The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment". Water 12, nr 11 (27.10.2020): 3008. http://dx.doi.org/10.3390/w12113008.
Pełny tekst źródłaPolgári, Márta, Ildikó Gyollai, Szaniszló Bérczi, Miklós Veres, Arnold Gucsik i Pál-Molnár Elemér. "Microbial mediation of textures and minerals – terrestrial or parent body processes?" Open Astronomy 28, nr 1 (1.01.2019): 40–60. http://dx.doi.org/10.1515/astro-2019-0004.
Pełny tekst źródłaBosak, Tanja, Giulio Mariotti, Francis A. MacDonald, J. Taylor Perron i Sara B. Pruss. "Microbial Sedimentology of Stromatolites in Neoproterozoic Cap Carbonates". Paleontological Society Papers 19 (październik 2013): 51–76. http://dx.doi.org/10.1017/s1089332600002680.
Pełny tekst źródłaZhu, Xiang Y., John Lubeck i John J. Kilbane. "Characterization of Microbial Communities in Gas Industry Pipelines". Applied and Environmental Microbiology 69, nr 9 (wrzesień 2003): 5354–63. http://dx.doi.org/10.1128/aem.69.9.5354-5363.2003.
Pełny tekst źródłaRozprawy doktorskie na temat "MICROBIALLY"
Li, Kwan (Kwan Hon). "Microbially influenced corrosion in sour environments". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/88382.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 119-123).
Microbially influenced corrosion (MIC) is a costly and poorly understood source of corrosion that plagues many modern industrial processes such as oil extraction and transportation. Throughout the years, many possible mechanisms for MIC have been proposed. One specific proposed mechanism was tested in this thesis: that the metal-binding characteristic of bacterial biofilms enhanced corrosion when it appears in conjunction with an iron sulfide film. Two model biogels were used: calcium alginate, which has this metal-binding property, and agarose, which does not. In pursuit of this hypothesis, iron sulfide films were grown on mild steel coupons. Two distinct forms of iron sulfides were grown: a loose black product at low sulfide concentrations, and an adherent gold product at high sulfide concentrations. Many materials characterization techniques were attempted, and the black corrosion product was found to be a mixture of greigite and marcasite. However, this composition was observed to change irreversibly with the application of a laser that caused the material to either heat and/or dry. The resulting golden-colored corrosion product was found to consist mainly of monosulfides, implying the presence of mackinawite or pyrrhotite. By using electrochemical polarization experiments, it was found that calcium alginate enhanced the rate of corrosion; agarose reduced the rate of corrosion. This is in contrast to previously published literature. Contrary to the initial hypothesis, adding an underlying iron sulfide film did not appreciably alter the measured rate of corrosion. Additionally, it was found that biofilms generated by sulfate-reducing bacteria (SRB) enhanced corrosion in a manner similar to the calcium alginate gel, and lysing the cells within the biofilm did nothing to alter this effect. This implies that the biofilm itself, even in the absence of active bacterial metabolic activity, can enhance corrosion rates observed in MIC.
by Kwan Li.
S.M.
Montross, Scott Norman. "Geochemical evidence for microbially mediated subglacial mineral weathering". Thesis, Montana State University, 2007. http://etd.lib.montana.edu/etd/2007/montross/MontrossS0507.pdf.
Pełny tekst źródłaLu, Xinxin. "Microbially Mediated Transformation of Dissolved Nitrogen in Aquatic Environments". Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1429540424.
Pełny tekst źródłaPorter, Hannah Elizabeth. "Stabilisation of Geomaterials using Microbially Induced Calcium Carbonate Precipitation". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75981.
Pełny tekst źródłaAsare, Noble Kwame. "Microbially-mediated methyl iodide cycling in a particle-rich estuary". Thesis, University of Plymouth, 2007. http://hdl.handle.net/10026.1/2611.
Pełny tekst źródłaLeitholf, Andrew M. "Iron Cycling In Microbially Mediated Acid Mine Drainage Derived Sediments". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1434976163.
Pełny tekst źródłaCheng, Liang. "Innovative ground enhancement by improved microbially induced CaCO3 precipitation technology". Thesis, Cheng, Liang (2012) Innovative ground enhancement by improved microbially induced CaCO3 precipitation technology. PhD thesis, Murdoch University, 2012. https://researchrepository.murdoch.edu.au/id/eprint/15329/.
Pełny tekst źródłaArthur, Mickey Francis. "Soils containing 2,3,7,8-tetrachlorodibenzo-p-dioxin : aspects of their microbial activity and the potential for their microbially-mediated decontamination /". The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487330761218489.
Pełny tekst źródłaDawoud, Osama M. F. "The applicability of microbially induced calcite precipitation (MICP) for soil treatment". Thesis, University of Cambridge, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709509.
Pełny tekst źródłaDoloman, Anna. "Optimization of Biogas Production by Use of a Microbially Enhanced Inoculum". DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7531.
Pełny tekst źródłaKsiążki na temat "MICROBIALLY"
Heitz, E., H. C. Flemming i W. Sand, red. Microbially Influenced Corrosion of Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80017-7.
Pełny tekst źródłaSingh, Ajay K. Microbially Induced Corrosion and its Mitigation. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8019-2.
Pełny tekst źródłaBasnak, Gabriella. Microbially enhanced chemisorption of heavy metals(MECHM). Birmingham: University of Birmingham, 1998.
Znajdź pełny tekst źródłaMiddleton, Andrew Clyde. Microbially mediated dissimilatory sulfate reduction: Kinetics and environmental significance. Ann Arbor, MI: Xerox University Microfilms, 1990.
Znajdź pełny tekst źródłaHaq, Humara. Investigations of proteinase inhibitors and modifications to microbially produced cellulose. Birmingham: University of Birmingham, 1994.
Znajdź pełny tekst źródłaD, Thierry, Institute of Materials (Great Britain) i European Federation of Corrosion, red. Aspects of microbially induced corrosion: Papers from EUROCORR '96 and the EFC Working Party on Microbial Corrosion. London: Published for the European Federation of Corrosion by the Institute of Materials, 1997.
Znajdź pełny tekst źródłaNice, France) EUROCORR (1996. Aspects of microbially induced corrosion: Papers from EUROCORR '96 and the EFC Working Party on Microbial Corrosion. London: Institute of Materials, 1997.
Znajdź pełny tekst źródłaVisser, S. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes. Calgary: Acid Deposition Research Program, 1987.
Znajdź pełny tekst źródłaVisser, S. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes. Calgary, AB: Acid Deposition Research Program, 1987.
Znajdź pełny tekst źródłaShoesmith, David William. The resistance of titanium to pitting, microbially induced corrosion in unsaturated conditions. Pinawa, Man: AECL, Whiteshell Laboratories, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "MICROBIALLY"
Haug, Roger Tim. "Microbially Induced Corrosion". W Lessons in Environmental Microbiology, 658–69. Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429442902-20.
Pełny tekst źródłaGupta, Indarchand, Alka Yadav, Avinash P. Ingle, Silvio Silverio da Silva, Chistiane Mendes Feitosa i Mahendra Rai. "Microbially Synthesized Nanoparticles". W Microbial Nanotechnology, 288–300. Boca Raton: CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.4324/9780429276330-15.
Pełny tekst źródłaGlasauer, Susan. "Nanocrystals, Microbially Induced". W Encyclopedia of Geobiology, 681–84. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_155.
Pełny tekst źródłaNoffke, Nora. "Microbially Induced Sedimentary Structures". W Encyclopedia of Astrobiology, 1045–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1004.
Pełny tekst źródłaNoffke, Nora. "Microbially Induced Sedimentary Structures". W Encyclopedia of Astrobiology, 1565–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1004.
Pełny tekst źródłaRamadan, Mohamed M., Asran-Amal, Hassan Almoammar i Kamel A. Abd-Elsalam. "Microbially Synthesized Biomagnetic Nanomaterials". W Nanotechnology in the Life Sciences, 49–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16439-3_4.
Pełny tekst źródłaSharma, Mohita, i Priyangshu M. Sarma. "Microbially Mediated Electrosynthesis Processes". W Microbial Fuel Cell, 421–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66793-5_22.
Pełny tekst źródłaPaddon, Christopher J., Derek McPhee, Patrick J. Westfall, Kirsten R. Benjamin, Douglas J. Pitera, Rika Regentin, Karl Fisher, Scott Fickes, Michael D. Leavell i Jack D. Newman. "Microbially Derived Semisynthetic Artemisinin". W Isoprenoid Synthesis in Plants and Microorganisms, 91–106. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4063-5_7.
Pełny tekst źródłaBosak, Tanja. "Calcite Precipitation, Microbially Induced". W Encyclopedia of Geobiology, 223–27. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_41.
Pełny tekst źródłaNoffke, Nora. "Microbially Induced Sedimentary Structures". W Encyclopedia of Astrobiology, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1004-5.
Pełny tekst źródłaStreszczenia konferencji na temat "MICROBIALLY"
Rogers, Robert D., Melinda A. Hamilton i Lee O. Nelson. "Microbially influenced degradation of concrete structures". W Non-Destructive Evaluation Techniques for Aging Infrastructure & Manufacturing, redaktor Walter G. Reuter. SPIE, 1998. http://dx.doi.org/10.1117/12.302525.
Pełny tekst źródłaWood, Jonathan M., i Iain S. C. Spark. "Microbially Induced Formation Damage in Oilfield Reservoirs". W SPE International Symposium on Formation Damage Control. Society of Petroleum Engineers, 2000. http://dx.doi.org/10.2118/58750-ms.
Pełny tekst źródłaNgoma, M. C., O. Kolawole, M. B. Elinski, R. Thomas i R. LaGrand. "Sub-Core Scale Characterization of Microbial Invasion Impact in Carbonates: Implications for Mechanical Alteration". W 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0064.
Pełny tekst źródłaMaxwell, Stephen. "Predicting Microbially Influenced Corrosion in Seawater Injection Systems". W SPE International Oilfield Corrosion Symposium. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/100519-ms.
Pełny tekst źródłaHassan, Najlaa, Azadeh Farzaneh, Gary Pertmer, Paul Rostron, Dianne Poster, Joey Robertson i Mohamad Al-Sheikhly. "Chemical and microbially-induced corrosion in petroleum pipelines". W RDPETRO 2018: Research and Development Petroleum Conference and Exhibition, Abu Dhabi, UAE, 9-10 May 2018. American Association of Petroleum Geologists, Society of Exploration Geophysicists, European Association of Geoscientists and Engineers, and Society of Petroleum Engineers, 2018. http://dx.doi.org/10.1190/rdp2018-50000017.1.
Pełny tekst źródłaBucci, Nicholas A., Ehsan Ghazanfari i Huijie Lu. "Microbially-Induced Calcite Precipitation for Sealing Rock Fractures". W Geo-Chicago 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784480144.055.
Pełny tekst źródłaZhang, Xu, R. M. Knapp i M. J. McInerney. "A Mathematical Model for Microbially Enhanced Oil Recovery Process". W SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/24202-ms.
Pełny tekst źródłaXu, Xichen, Hongtao Wang, Wenbin Lin, Xiaohui Cheng i Hongxian Guo. "Desert Aeolian Sand Cementation via Microbially Induced Carbonate Precipitation". W International Foundations Congress and Equipment Expo 2021. Reston, VA: American Society of Civil Engineers, 2021. http://dx.doi.org/10.1061/9780784483411.027.
Pełny tekst źródłaLewicka, D., i A. Pfennig. "Abiotic and microbially influenced corrosion on buried iron artefacts". W STREMAH 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/str130321.
Pełny tekst źródłaPandey, R., T. Sohail, A. I. Ajibona i S. Saurabh. "Molecular Dynamics Insights into Bioconversion Induced Matrix Strain". W 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0785.
Pełny tekst źródłaRaporty organizacyjne na temat "MICROBIALLY"
Quistorff, Anne S. Microbially Mediated Reductive Dechlorination of Dichlorobenzene. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1999. http://dx.doi.org/10.21236/ada384655.
Pełny tekst źródłaBagwell, Christopher, Vanessa Garayburu-Caruso i Danielle Saunders. Analysis of Microbial Communities as Indicators of Microbially Induced Corrosion Potential in Stainless Steel Piping. Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1832167.
Pełny tekst źródłaScott Fendorf. Microbially Mediated Immobilization of Contaminants Through In Situ Biostimulation. Office of Scientific and Technical Information (OSTI), lipiec 2003. http://dx.doi.org/10.2172/822414.
Pełny tekst źródłaSparks, Taylor D., John Mclennan, John Fuertez i Kyu-Bum Han. Ceramic Proppant Design for In-situ Microbially Enhanced Methane Recovery. Office of Scientific and Technical Information (OSTI), grudzień 2017. http://dx.doi.org/10.2172/1415142.
Pełny tekst źródłaKenneth Brezinsky. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening. Office of Scientific and Technical Information (OSTI), styczeń 2008. http://dx.doi.org/10.2172/972637.
Pełny tekst źródłaRai, C. Microbially-enhanced redox solution reoxidation for sweetening sour natural gas. Office of Scientific and Technical Information (OSTI), czerwiec 1995. http://dx.doi.org/10.2172/82537.
Pełny tekst źródłaSevanto, Sanna. Microbial Carbon Cycling in Terrestrial Ecosystems Phase V: Mechanisms that create and maintain microbially-driven variation in carbon fate. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1812645.
Pełny tekst źródłaGill Geesey, Timothy Magnuson i Andrew Neal. Microbially-Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides. Office of Scientific and Technical Information (OSTI), czerwiec 2002. http://dx.doi.org/10.2172/806821.
Pełny tekst źródłaYyri A. Gorby, Gill G. Geesey, Jr Frank Caccavo i James K. Fredrickson. Microbially Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides. Office of Scientific and Technical Information (OSTI), luty 2003. http://dx.doi.org/10.2172/809797.
Pełny tekst źródłaGorby, Yuri A., Gill G. Geesey i Frank Caccavo, Jr. Microbially Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides. Office of Scientific and Technical Information (OSTI), czerwiec 1999. http://dx.doi.org/10.2172/831210.
Pełny tekst źródła