Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Microbial metabolism.

Artykuły w czasopismach na temat „Microbial metabolism”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Microbial metabolism”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

VINOPAL, R. T. "Microbial Metabolism". Science 239, nr 4839 (29.01.1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Downs, Diana M. "Understanding Microbial Metabolism". Annual Review of Microbiology 60, nr 1 (październik 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

ARNAUD, CELIA. "VIEWING MICROBIAL METABOLISM". Chemical & Engineering News 85, nr 38 (17.09.2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wackett, Lawrence P. "Microbial metabolism prediction". Environmental Microbiology Reports 2, nr 1 (8.02.2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hahn-Hägerdal, Bärbel, i Neville Pamment. "Microbial Pentose Metabolism". Applied Biochemistry and Biotechnology 116, nr 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 5, nr 2 (5.03.2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 15, nr 3 (5.05.2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rajini, K. S., P. Aparna, Ch Sasikala i Ch V. Ramana. "Microbial metabolism of pyrazines". Critical Reviews in Microbiology 37, nr 2 (11.04.2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chubukov, Victor, Luca Gerosa, Karl Kochanowski i Uwe Sauer. "Coordination of microbial metabolism". Nature Reviews Microbiology 12, nr 5 (24.03.2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ash, Caroline. "Microbial entrainment of metabolism". Science 365, nr 6460 (26.09.2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Nakamura, T. "Microbial Manipulation of Metabolism". Science Translational Medicine 4, nr 148 (22.08.2012): 148ec153. http://dx.doi.org/10.1126/scitranslmed.3004777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Orabi, K. "Microbial metabolism of artemisitene". Phytochemistry 51, nr 2 (maj 1999): 257–61. http://dx.doi.org/10.1016/s0031-9422(98)00770-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Rao, AS. "Terminology in microbial metabolism". Biochemical Education 24, nr 1 (styczeń 1996): 61–62. http://dx.doi.org/10.1016/s0307-4412(96)80011-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Howland, John L. "Microbial physiology and metabolism". Biochemical Education 23, nr 2 (kwiecień 1995): 106. http://dx.doi.org/10.1016/0307-4412(95)90661-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Cerniglia, Carl E., Daniel W. Kelly, James P. Freeman i Dwight W. Miller. "Microbial metabolism of pyrene". Chemico-Biological Interactions 57, nr 2 (luty 1986): 203–16. http://dx.doi.org/10.1016/0009-2797(86)90038-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Sonnleitner, B. "Quantitation of microbial metabolism". Antonie van Leeuwenhoek 60, nr 3-4 (1991): 133–43. http://dx.doi.org/10.1007/bf00430361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Stoker, C. R., P. J. Boston, R. L. Mancinelli, W. Segal, B. N. Khare i C. Sagan. "Microbial metabolism of tholin". Icarus 85, nr 1 (maj 1990): 241–56. http://dx.doi.org/10.1016/0019-1035(90)90114-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Alfred, Jane. "Microbial genomes to metabolism". Nature Reviews Genetics 3, nr 10 (październik 2002): 733. http://dx.doi.org/10.1038/nrg922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Dong, Mei, Xizhi Feng, Ben-Xiang Wang, Takashi Ikejima i Li-Jun Wu. "Microbial Metabolism of Pseudoprotodioscin". Planta Medica 70, nr 7 (lipiec 2004): 637–41. http://dx.doi.org/10.1055/s-2004-827187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mikell, Julie Rakel, Wimal Herath i Ikhlas Ahmad Khan. "Microbial Metabolism. Part 12." Chemical and Pharmaceutical Bulletin 59, nr 6 (2011): 692–97. http://dx.doi.org/10.1248/cpb.59.692.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Heider, Johann, i Georg Fuchs. "Microbial Anaerobic Aromatic Metabolism". Anaerobe 3, nr 1 (luty 1997): 1–22. http://dx.doi.org/10.1006/anae.1997.0073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

McChesney, J., i S. Kouzi. "Microbial Models of Mammalian Metabolism: Sclareol Metabolism". Planta Medica 56, nr 06 (grudzień 1990): 693. http://dx.doi.org/10.1055/s-2006-961374.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Raab, Andrea, i Jörg Feldmann. "Microbial Transformation of Metals and Metalloids". Science Progress 86, nr 3 (sierpień 2003): 179–202. http://dx.doi.org/10.3184/003685003783238671.

Pełny tekst źródła
Streszczenie:
Throughout evolution, microbes have developed the ability to live in nearly every environmental condition on earth. They can grow with or without oxygen or light. Microbes can dissolve or precipitate ores and are able to yield energy from the reduction/oxidation of metal ions. Their metabolism depends on the availability of metal ions in essential amounts and protects itself from toxic amounts of metals by detoxification processes. Metals are metabolised to metallorgano-compounds, bound to proteins or used as catalytic centres of enzymes in biological reactions. Microbes, as every other cell, have developed a whole range of mechanisms for the uptake and excretion of metals and their metabolised compounds. The diversity of microbial metabolism can be illustrated by the fact that certain microbes can be found living on arsenate, which is considered a highly toxic metal for most other forms of live.
Style APA, Harvard, Vancouver, ISO itp.
24

Fouillaud, Mireille, i Laurent Dufossé. "Microbial Secondary Metabolism and Biotechnology". Microorganisms 10, nr 1 (7.01.2022): 123. http://dx.doi.org/10.3390/microorganisms10010123.

Pełny tekst źródła
Streszczenie:
In recent decades scientific research has demonstrated that the microbial world is infinitely richer and more surprising than we could have imagined. Every day, new molecules produced by microorganisms are discovered, and their incredible diversity has not yet delivered all of its messages. The current challenge of research is to select from the wide variety of characterized microorganisms and compounds, those which could provide rapid answers to crucial questions about human or animal health or more generally relating to society’s demands for medicine, pharmacology, nutrition or everyday well-being.
Style APA, Harvard, Vancouver, ISO itp.
25

Wintermute, Edwin H., i Pamela A. Silver. "Emergent cooperation in microbial metabolism". Molecular Systems Biology 6, nr 1 (styczeń 2010): 407. http://dx.doi.org/10.1038/msb.2010.66.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Crunkhorn, Sarah. "Microbial metabolite predicts human metabolism". Nature Reviews Drug Discovery 8, nr 10 (październik 2009): 772–73. http://dx.doi.org/10.1038/nrd3008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Schuetz, R., N. Zamboni, M. Zampieri, M. Heinemann i U. Sauer. "Multidimensional Optimality of Microbial Metabolism". Science 336, nr 6081 (3.05.2012): 601–4. http://dx.doi.org/10.1126/science.1216882.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

VanHook, Annalisa M. "Microbial metabolites shape lipid metabolism". Science Signaling 13, nr 627 (14.04.2020): eabc1552. http://dx.doi.org/10.1126/scisignal.abc1552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ensign, Scott A. "Microbial Metabolism of Aliphatic Alkenes†". Biochemistry 40, nr 20 (maj 2001): 5845–53. http://dx.doi.org/10.1021/bi015523d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kochanowski, Karl, Uwe Sauer i Elad Noor. "Posttranslational regulation of microbial metabolism". Current Opinion in Microbiology 27 (październik 2015): 10–17. http://dx.doi.org/10.1016/j.mib.2015.05.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Heinemann, Matthias, i Uwe Sauer. "Systems biology of microbial metabolism". Current Opinion in Microbiology 13, nr 3 (czerwiec 2010): 337–43. http://dx.doi.org/10.1016/j.mib.2010.02.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kelly, D. P., i J. C. Murrell. "Microbial metabolism of methanesulfonic acid". Archives of Microbiology 172, nr 6 (15.11.1999): 341–48. http://dx.doi.org/10.1007/s002030050770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Codd, G. A. "Environmental regulation of microbial metabolism". Endeavour 10, nr 1 (styczeń 1986): 52. http://dx.doi.org/10.1016/0160-9327(86)90063-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

McArthur, George H., i Stephen S. Fong. "Toward Engineering Synthetic Microbial Metabolism". Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.

Pełny tekst źródła
Streszczenie:
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements inde novoDNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
Style APA, Harvard, Vancouver, ISO itp.
35

Zhan, Ji-Xun, Yuan-Xing Zhang, Hong-Zhu Guo, Jian Han, Li-Li Ning i De-An Guo. "Microbial Metabolism of Artemisinin byMucorpolymorphosporusandAspergillusniger". Journal of Natural Products 65, nr 11 (listopad 2002): 1693–95. http://dx.doi.org/10.1021/np020113r.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Negre, M., M. Gennari, V. Andreoni, R. Ambrosoli i L. Celi. "Microbial metabolism of fluazifop-butyl". Journal of Environmental Science and Health, Part B 28, nr 5 (październik 1993): 545–76. http://dx.doi.org/10.1080/03601239309372841.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Herath, Wimal, Daneel Ferreira, Julie Rakel Mikell i Ikhlas Ahmad Khan. "Microbial Metabolism. Part 5. Dihydrokawain". CHEMICAL & PHARMACEUTICAL BULLETIN 52, nr 11 (2004): 1372–74. http://dx.doi.org/10.1248/cpb.52.1372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Herath, Wimal, Daneel Ferreira i Ikhlas A. Khan. "Microbial metabolism. Part 7: Curcumin". Natural Product Research 21, nr 5 (maj 2007): 444–50. http://dx.doi.org/10.1080/14786410601082144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Klitgord, Niels, i Daniel Segrè. "Ecosystems biology of microbial metabolism". Current Opinion in Biotechnology 22, nr 4 (sierpień 2011): 541–46. http://dx.doi.org/10.1016/j.copbio.2011.04.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Gennari, Mara, Marco Vincenti, Michèle Nègre i Roberto Ambrosoli. "Microbial metabolism of fenoxaprop-ethyl". Pesticide Science 44, nr 3 (lipiec 1995): 299–303. http://dx.doi.org/10.1002/ps.2780440314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Martínez-Espinosa, Rosa María, i Carmen Pire. "Molecular Advances in Microbial Metabolism". International Journal of Molecular Sciences 24, nr 9 (28.04.2023): 8015. http://dx.doi.org/10.3390/ijms24098015.

Pełny tekst źródła
Streszczenie:
Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...]
Style APA, Harvard, Vancouver, ISO itp.
42

Bidkhori, Gholamreza, i Saeed Shoaie. "MIGRENE: The Toolbox for Microbial and Individualized GEMs, Reactobiome and Community Network Modelling". Metabolites 14, nr 3 (21.02.2024): 132. http://dx.doi.org/10.3390/metabo14030132.

Pełny tekst źródła
Streszczenie:
Understanding microbial metabolism is crucial for evaluating shifts in human host–microbiome interactions during periods of health and disease. However, the primary hurdle in the realm of constraint-based modeling and genome-scale metabolic models (GEMs) pertaining to host–microbiome interactions lays in the efficient utilization of metagenomic data for constructing GEMs that encompass unexplored and uncharacterized genomes. Challenges persist in effectively employing metagenomic data to address individualized microbial metabolisms to investigate host–microbiome interactions. To tackle this issue, we have created a computational framework designed for personalized microbiome metabolisms. This framework takes into account factors such as microbiome composition, metagenomic species profiles and microbial gene catalogues. Subsequently, it generates GEMs at the microbial level and individualized microbiome metabolisms, including reaction richness, reaction abundance, reactobiome, individualized reaction set enrichment (iRSE), and community models. Using the toolbox, our findings revealed a significant reduction in both reaction richness and GEM richness in individuals with liver cirrhosis. The study highlighted a potential link between the gut microbiota and liver cirrhosis, i.e., increased level of LPS, ammonia production and tyrosine metabolism on liver cirrhosis, emphasizing the importance of microbiome-related factors in liver health.
Style APA, Harvard, Vancouver, ISO itp.
43

Kiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada i S. Kanazawa. "Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts". Soil and Water Research 7, No. 3 (10.07.2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.

Pełny tekst źródła
Streszczenie:
The effects of highly volatile organochlorine solvents (1,1,1-trichloroethane, TCET; trichloroethylene, TCE; and tetrachloroethylene, PCE) on soil nitrogen cycle and microbial counts were investigated using volcanic ash soil with different fertilizations. All the solvents significantly inhibited the activity of the cycle under the sealed conditions with 10 to 50 mg/g (dry soil) solvents added. No significant difference between the solvents, and between fertilization plots, was observed. Nitrate ion was not accumulated, and instead, ammonium ion was highly accumulated in the presence of the solvents. Nitrite ion was partially detected, while l-glutaminase activity was inhibited. The growths of ammonification, nitritation, nitratation and denitrification bacteria, and filamentous fungi were significantly inhibited in the presence of 10 mg/g (dry soil) of the solvents. 
Style APA, Harvard, Vancouver, ISO itp.
44

Kuo, Jimmy, Daniel Liu i Chorng-Horng Lin. "Functional Prediction of Microbial Communities in Sediment Microbial Fuel Cells". Bioengineering 10, nr 2 (3.02.2023): 199. http://dx.doi.org/10.3390/bioengineering10020199.

Pełny tekst źródła
Streszczenie:
Sediment microbial fuel cells (MFCs) were developed in which the complex substrates present in the sediment could be oxidized by microbes for electron production. In this study, the functional prediction of microbial communities of anode-associated soils in sediment MFCs was investigated based on 16S rRNA genes. Four computational approaches, including BugBase, Functional Annotation of Prokaryotic Taxa (FAPROTAX), the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, were applied. A total of 67, 9, 37, and 38 functional features were statistically significant. Among these functional groups, the function related to the generation of precursor metabolites and energy was the only one included in all four computational methods, and the sum total of the proportion was 93.54%. The metabolism of cofactor, carrier, and vitamin biosynthesis was included in the three methods, and the sum total of the proportion was 29.94%. The results suggested that the microbial communities usually contribute to energy metabolism, or the metabolism of cofactor, carrier, and vitamin biosynthesis might reveal the functional status in the anode of sediment MFCs.
Style APA, Harvard, Vancouver, ISO itp.
45

Dillard, Lillian R., Dawson D. Payne i Jason A. Papin. "Mechanistic models of microbial community metabolism". Molecular Omics 17, nr 3 (2021): 365–75. http://dx.doi.org/10.1039/d0mo00154f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Gray, T. R. G., i G. A. Codd. "Aspects of Microbial Metabolism and Ecology." Journal of Applied Ecology 23, nr 1 (kwiecień 1986): 357. http://dx.doi.org/10.2307/2403111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Fitzpatrick, Paul F. "The enzymes of microbial nicotine metabolism". Beilstein Journal of Organic Chemistry 14 (31.08.2018): 2295–307. http://dx.doi.org/10.3762/bjoc.14.204.

Pełny tekst źródła
Streszczenie:
Because of nicotine’s toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized forArthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon–nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Style APA, Harvard, Vancouver, ISO itp.
48

Wu, Bo, Feifei Liu, Wenwen Fang, Tony Yang, Guang-Hao Chen, Zhili He i Shanquan Wang. "Microbial sulfur metabolism and environmental implications". Science of The Total Environment 778 (lipiec 2021): 146085. http://dx.doi.org/10.1016/j.scitotenv.2021.146085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Amend, J. P., C. Saltikov, G. S. Lu i J. Hernandez. "Microbial Arsenic Metabolism and Reaction Energetics". Reviews in Mineralogy and Geochemistry 79, nr 1 (1.01.2014): 391–433. http://dx.doi.org/10.2138/rmg.2014.79.7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Sun, Jing, Michaela A. Mausz, Yin Chen i Stephen J. Giovannoni. "Microbial trimethylamine metabolism in marine environments". Environmental Microbiology 21, nr 2 (3.12.2018): 513–20. http://dx.doi.org/10.1111/1462-2920.14461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii